Type of Work
Article
Date
2015
Journal Title
Journal of Commutative Algebra
Journal ISSN
1939-0807
Journal Volume
7
Journal Issue
2
First Page
189
Last Page
206
DOI
10.1216/JCA-2015-7-2-189
Abstract
We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij-Soederberg theory. That is, given a Betti diagram, we decompose it into pure diagrams. Relaxing the requirement that the degree sequences in such pure diagrams be totally ordered, we are able to define a multiplication law for Betti diagrams that respects the decomposition and allows us to write a simple expression of the decomposition of the Betti diagram of any complete intersection in terms of the degrees of its minimal generators. In the more traditional sense, the decomposition of complete intersections of codimension at most 3 are also computed as given by the totally ordered decomposition algorithm obtained from [3]. In higher codimension, obstructions arise that inspire our work on an alternative algorithm.
Citation Information
Gibbons, Courtney; Jeffries, Jack; Mayes-Tang, Sarah; Raicu, Claudiu; Stone, Branden; and White, Bryan, "Non-Simplicial Decompositions of Betti Diagrams of Complete Intersections" (2015). Hamilton Digital Commons.
https://digitalcommons.hamilton.edu/articles/60
Hamilton Areas of Study
Mathematics
Notes
This document is the publisher's version of an article published in:
Journal of Commutative Algebra, vol. 7, no. 2 (2015): 189-206. doi: 10.1216/JCA-2015-7-2-189