Active colloidal particles in emulsion droplets: A model system for the cytoplasm
Type of Work
Article
Date
3-2019
Journal Title
The European Physical Journal Special Topics
Journal ISSN
1951-6355
Journal Volume
227
Journal Issue
17
First Page
2413
Last Page
2424
DOI
10.1140/epjst/e2019-800026-y
Abstract
In living cells, molecular motors create activity that enhances the diffusion of particles throughout the cytoplasm, and not just ones attached to the motors. We demonstrate initial steps toward creating artificial cells that mimic this phenomenon. Our system consists of active, Pt-coated Janus particles and passive tracers confined to emulsion droplets. We track the motion of both the active particles and passive tracers in a hydrogen peroxide solution, which serves as the fuel to drive the motion. We first show that correcting for bulk translational and rotational motion of the droplets induced by bubble formation is necessary to accurately track the particles. After drift correction, we find that the active particles show enhanced diffusion in the interior of the droplets and are not captured by the droplet interface. At the particle and hydrogen peroxide concentrations we use, we observe little coupling between the active and passive particles. We discuss the possible reasons for lack of coupling and describe ways to improve the system to more effectively mimic cytoplasmic activity.
Citation Information
Horowitz, Viva R.; Chambers, Zachary C.; Gözen, İrep; Dimiduk, Thomas G.; and Manoharan, Vinothan N., "Active colloidal particles in emulsion droplets: A model system for the cytoplasm" (2019). Hamilton Digital Commons.
https://digitalcommons.hamilton.edu/articles/362
Hamilton Areas of Study
Physics