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Plane Gravitational Waves and Loop Quantization

F Hinterleitner1 and S Major2

1 Department of Theoretical Physics and Astrophysics, Faculty of Science of the Masaryk
University, Kotlářská 2, 61137 Brno, Czech Republic
2 Department of Physics, Hamilton College, Clinton NY 13323 USA

Abstract. Starting from the polarized Gowdy model in Ashtekar variables, the Killing
equations characteristic for plane-fronted parallel gravitational waves are introduced in part
as a set of first-class constraints, in addition to the standard ones of General Relativity. These
constraints are expressed in terms of quantities that have an operator equivalent in Loop
Quantum Gravity, making plane wave space-times accessible to loop quantization techniques.

1. Introduction
The motivation for studying plane gravitational waves is two fold: First, these waves are
interesting objects on which to test possible quantum theories of gravity. Being homogenous in
two directions and inhomogeneous in the third direction, the degree of difficulty of these models
lies between the complicated theory of General Relativity (GR) and homogenous cosmological
models. Second, the last decade has seen an abundance of conjectures on Lorentz invariance (LI)
violation, dependence of the speed of light on energy, “Doubly Special Relativity”, and so on,
see e.g. [1]. Some of these conjectures are inspired by the granularity of space predicted by Loop
Quantum Gravity (LQG). So far there are plausibility arguments in favor of or against these
conjectures, for example [2], but, to our knowledge, no calculation from an exactly solvable
model. There is important prior work: plane gravitational waves were quantized [3]; LI
has been investigated in the context of spherical symmetry [4], and [5] provides a derivation
of gravitational wave dispersion in LQG in a cosmological context by perturbative methods.
Gravitational plane waves appear to be simple enough for deducing whether LQG techniques
yield dispersion, without further simplifications.

We start from a slightly more general system, the polarized Gowdy model in a form presented
by Banerjee and Date [6, 7]. Like space with plane waves, this model is homogenous in two
dimensions. The essential step in the reduction is to single out waves going into one direction
and so to avoid colliding plane waves, which lead to complicated interaction processes and
singularities. This reduction is carried out by means of a set of first-class constraints, so that
the system becomes accessible to loop quantum techniques. See [8] for more details.

2. The polarized Gowdy model in Ashtekar variables
We assume homogeneity in the x, y plane and wave propagation in the z direction. We choose
adapted spatial triads with one leg in the z direction and two arbitrary orthogonal vectors in
the x, y plane. Densitized inverse triad variables are denoted by Eai, a = x, y, z and i = 1, 2, 3.
Following [6] we write E := Ez3 and introduce “polar” coordinates for the triad vectors in the
x, y plane with the “radial” components Ex and Ey. The associated “angular” variable (the
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same for Ex and Ey in the polarized Gowdy model) is pure gauge. They are fixed and disappear
when the Gauß constraint is strongly imposed [6]. All variables depend only on z and the time
variable t. The canonically conjugate diagonal elements of the Ashtekar connection (divided by
the Barbero-Immirzi parameter γ) to Ex and Ey are the extrinsic curvature components Kx

and Ky, the conjugate element to E is denoted by A. The fundamental Poisson brackets are

{Ka(z), E
b(z′)} = κδbaδ(z − z′), {A(z), E(z′)} = κδ(z − z′). (1)

κ = 8πGNewton is the gravitational constant.
In terms of these variables, and modulo the strongly imposed Gauß constraint, we have the

following sets of first-class constraints of GR: The diffeomorphism constraint

C =
1

κ

[
K ′xE

x +K ′yE
y − E ′A

]
, (2)

(the prime denotes the derivative with respect to z) generating diffeomorphisms along the z-axis,
and the Hamiltonian constraint

H = − 1

κ
√
EExEy

ExKxE
yKy + (ExKx + EyKy)EA −

1

4
E ′2 − EE ′′

− 1

4
E2
[(

ln
Ey

Ex

)′]2
+

1

2
EE ′(lnExEy)′

 .
(3)

3. Reduction to plane waves
Plane waves are characterized by a null Killing vector field in the direction of propagation. With
a lapse function N(t, z) we have the space-time metric

ds2 = −N2 dt2 + E E
y

Ex
dx2 + E E

x

Ey
dy2 +

ExEy

E
dz2. (4)

For this metric a null vector field in the positive z-direction has the form kµ =(√
ExEy/E k, 0, 0,±Nk

)
with k = k(t, z). With the minus sign chosen, the Killing equations

kµ;ν + kν;µ = 0 give rise to the following conditions

Ux = ExKx−
1

2
E ′− 1

2
E
(
Ey ′

Ey
− Ex′

Ex

)
= 0, Uy = EyKy−

1

2
E ′+ 1

2
E
(
Ey ′

Ey
− Ex′

Ex

)
= 0. (5)

These two relations render the spatial diffeomorphism and Hamiltonian constraints equivalent,

C ≈ −

√
ExEy

E
H = −√gzzH.

4. Constraints
With test functions the expressions Ux and Uy become

Ua[f ] :=

∫
dz f(z)Ua(z). (6)

The Poisson bracket structure may be expressed as(
{Ux[f ], Ux[g]} {Ux[f ], Uy[g]}
{Uy[f ], Ux[g]} {Uy[f ], Uy[g]}

)
=

1

2

(
1 −1
−1 1

)∫
dz (f ′g − fg′) E . (7)
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This matrix has a zero eigenvalue and is diagonalized by the combinations U+ = Ux + Uy and
U− = Ux − Uy, or explicitly

U+ = ExKx + EyKy − E ′, U− = ExKx − EyKy − E
(

ln
Ey

Ex

)′
. (8)

The algebra of these new constraints is

{U+[f ], U+[g]} = {U+[f ], U−[g]} = 0, {U−[f ], U−[g]} = 2

∫
dz (f ′g − fg′) E . (9)

U+ weakly Poisson-commutes also with C, and H:

{U+[f ], C[g]} = −1

κ
U+[f ′g] ≈ 0, {U+[f ], H[g]} =

1

κ
U+

√ E
ExEy

f ′g

−H[fg] ≈ 0. (10)

Thus U+ can be added as another first-class constraint. Together with the Poisson bracket
relations of the standard constraints,

{C[f ], C[g]} = C[fg′ − f ′g], {C[f ], H[g]} = H[fg′],

{H[f ], H[g]} = C

[
(fg′ − f ′g)

E
ExEy

]
,

(11)

they establish the enlarged Poisson bracket algebra of the first-class constraints C, H, and U+.
The constraint U− can be written in terms of the three first-class constraints [8].

Concerning physical degrees of freedom counting, the gauge generators C and H reduce the
number from originally three canonical pairs to one, when applied together with corresponding
gauge conditions. The constraints U+(z) on the other hand, are not gauge generators, there are
no gauge conditions associated with them, so they fix one function. Thus, when all constraints
and gauge conditions are imposed, there is one free function left, like in the standard approach
to plane waves. In this way the association of classical variables in canonical pairs gets lost. In
the Dirac quantization approach however, one does not impose the constraints strongly, but as
conditions on physical state functions, so in quantum theory the canonical structure remains
untouched.

5. Preparation for quantization
In view of quantization it is important that U+ can be given a meaning as a well-defined operator.
Both ExKx + EyKy and E ′ are scalar densities that can be naturally integrated along z. The
integral over some interval I is

U+[I] =

∫
I
dz(ExKx + EyKy)− E+ + E−, (12)

where E± are the values of E at the endpoints of I. E has a meaningful operator equivalent in
the adapted LQG framework [7]. In analogy to full LQG the integral in (12) can be obtained
as the Poisson bracket{∫

dx
ExKxE

yKy√
EExEy

,

∫
dy
√
EExEy

}
=

1

2

∫
dz(ExKx + EyKy). (13)

The first expression in the bracket is the restriction of the Euclidean Hamiltonian constraint to
the x, y plane, the second one is the volume of a slice of space, constructed from a fiducial (unit)
area in the x, y plane as basis and some perpendicular interval in the z-direction.

The analogs of both of them have operator equivalents in standard LQG, for the present case
we find the corresponding operators in [7], equations (31) and (32). Now we are in a position to
express all first-class constraints in terms of loop quantum operators, acting on one-dimensional
spin network states, as demonstrated in [7].

Loops 11: Non-Perturbative / Background Independent Quantum Gravity IOP Publishing
Journal of Physics: Conference Series 360 (2012) 012030 doi:10.1088/1742-6596/360/1/012030

3



6. Conclusion and outlook
In classical GR the existence of a null Killing vector field in the direction of propagation of
gravitational plane waves guarantees dispersion-free propagation of such waves at a constant
speed. In the present paper it was shown that a linear combination of two Killing equations,
concerning area and volume expansion, can be expressed as a set of first class constraints in
the polarized Gowdy model of [6]. The complementary linear combination U− is dependent
on the set of first-class constraints, so the latter one contains the full information about plane
gravitational waves. An ongoing quantum investigation in the spirit of [7] should illuminate the
issues of LI and dispersion of plane waves in LQG.
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