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Isotropic loop quantum cosmology with matter. II. The Lorentzian constraint

Franz Hinterleitner*
Department of Theoretical Physics and Astrophysics, Masaryk University, Kotla´ řská2, 611 37 Brno, Czech Republic

Seth Major†

Department of Physics, Hamilton College, Clinton, New York 13323, USA
~Received 18 September 2003; published 29 December 2003!

The Lorentzian Hamiltonian constraint is solved for isotropic loop quantum cosmology coupled to a mass-
less scalar field. As in the Euclidean case, the discreteness of quantum geometry removes the classical singu-
larity from the quantum Friedmann models. In spite of the absence of the classical singularity, a modified
DeWitt initial condition is incompatible with a late-time smooth behavior. Further, the smooth behavior is
recovered only for positiveor negatives times but not both. An important feature, which is shared with the
Euclidean case, is a minimal initial energy of the order of the Planck energy required for the system to evolve
dynamically. By forming wave packets of the matter field, an explicit evolution in terms of an internal time is
obtained.

DOI: 10.1103/PhysRevD.68.124023 PACS number~s!: 04.60.Kz, 98.80.Bp, 98.80.Qc

I. INTRODUCTION

A recent paper@1# reports on a quantization of a Euclid-
ean cosmology in which a massless scalar field was coupled
to a spatially flat Friedmann-Robertson-Walker model. Set in
the framework of isotropic loop quantum gravity~ILQC! @2#,
this model describes cosmological evolution in terms of a
discrete time. This discreteness is a direct consequence of the
kinematics of loop quantum gravity which predicts that geo-
metric quantities such as area@4,7,8#, volume @4–6,9,10#,
and angle@11# have a discrete spectrum. In@2# the Hamil-
tonian constraint of quantum gravity, expressed in a discrete
basis of volume eigenfunctions, and the matter Hamiltonian
act on the state function of the coupled system. This model
avoids the classical singularity. Because of the quantization
of the inverse scale factor of the Friedmann model@13# the
total Hamiltonian constraint vanishes at the classical singu-
larity. At small values of the volume the wave function dis-
plays a distinct discrete behavior. Nevertheless as the volume
of the model grows, the wave function approaches a continu-
ous function which is a solution of the asymptotic Wheeler-
DeWitt differential equation. The wave function thereby
meets the semiclassicality requirements of quantum cosmol-
ogy @12#.

In the present paper we investigate theLorentzianHamil-
tonian constraint for the same massless scalar field model
which is constructed along the prescriptions of the general
theory @21#, as it was introduced in@2#. In the spatially flat
Friedmann model, however, the classical full Lorentzian con-
straint is proportional to the Euclidean one, so there is a
quantum ambiguity and one can, as in recent work@22#,
alternatively consider the Euclidean constraint operator pro-
portional to the full one. In the semiclassical regime the re-
sults of both versions converge. The choice in this paper is

closer to the full theory of quantum geometry@21#.
We concentrate on three aspects of the ILQC framework.

First, the Hamiltonian constraint at early times leads to a
consistency relation for initial data—the ‘‘dynamical initial
conditions’’ of @20#. Although the Lorentzian constraint is
higher order than the Euclidean constraint, we find the same
relation in the model. Second, to select an essentially unique
solution one may require late time solutions to be smooth. In
such a ‘‘preclassical’’@20# state the wave function at late
times does not vary strongly on short intervals. We find that
this criterion again selects an essentially unique solution.
However, in contrast with the Euclidean model, evolution
backwards to negative time destroys the preclassical condi-
tion. Third, an unexpected feature and, at the same time the
main result of@1#, is the occurrence of a threshold for dy-
namical evolution of the model. For the wave function to
have a dynamical interpretation with respect to an internal
time there is a minimal energy on the order of the Planck
energy, concentrated initially in a volume of the size of a
Planck volume.

Scalar field quantum cosmology was first considered by
Blyth and Isham@3#. Canonically quantizing the reduced
model, they explored the dynamics for several choices of
time. The current work is in sharp contrast to this older work
in that the discreteness of ILQG manifests itself in early
times and completely changes the status of initial conditions
of the cosmological model.

As we are dealing with a generalization of the framework
of @1# in Sec. II we present the prerequisites very briefly. In
Sec. III the discrete Hamiltonian constraint is solved numeri-
cally and the solutions are discussed. In Sec. IV the
asymptotic Wheeler-DeWitt equation and its solutions are
constructed and compared with the Euclidean case. In Sec. V
an essentially unique wave function with a sufficiently
smooth late time behavior to represent a classical universe, is
singled out from the general solution of the Hamiltonian con-
straint. Section VI contains a study of possible wave packets
in the scalar field and their classical interpretation.

*Electronic address: franz@physics.muni.cz
†Electronic address: smajor@hamilton.edu
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II. PRELIMARIES: LOOP QUANTUM COSMOLOGY

We start with a quantization of the spatially flat
Friedmann-Robertson-Walker model with a scalar field as
matter source. The metric

ds252dt21a2~ t !@dx21dy21dz2#

represents a homogeneous, isotropic model with one dy-
namical degree of freedom, represented, for example, by the
scale factora(t) and its canonically conjugate momentum.
In the framework of loop quantum gravity, applied to isotro-
pic models@2#, the metric variablea(t) is replaced by a triad
variablep. This triad variable can assume both signs accord-
ing to the two possible orientations of a triad. By defining

pªa2sgn~a! ~1!

the domain ofa now extends to negative values. The conju-
gate momentum is

c5
1

2
ȧ. ~2!

Isotropic loop quantum cosmology@2# yields a discrete
basisun& of volume eigenstates,

V̂un&5S 1

6
g l P

2D 3/2

A~ unu21!unu~ unu11!un&

5:V(1/2)(unu21)un&, ~3!

where the integersn label discrete values ofp ~or the scale
factor!

n5
6

g l P
2

p. ~4!

In this basis the inverse scale factor operator, which is
constructed independently froma, is also diagonal@12#,

uau21ˆ un&516~g l P
2!22~AV(1/2)unu2AV(1/2)unu21!2un&.

~5!

This, in contrast to the inverse of the scale factor operator, is
a densely defined operator on the Hilbert space spanned by
the basis$un&%.

For the purposes of evaluating the Hamiltonian constraint
the most important feature of this construction is that the
eigenvalue zero of the volume is threefold degenerate, as can
be seen from Eq.~3!, it vanishes inu0& and inu61&, whereas

the eigenvalue of uau21ˆ is zero only onu0&. The latter state
assumes the role analogous to the classical singularitya
50. The vanishing of the inverse scale factor is a pure quan-
tum feature, in sharp contrast to the divergence of the clas-
sical a21 for a50.

An arbitrary stateus& of the cosmological model can be
expressed as

us&5(
2`

`

snun&. ~6!

In the ILQC framework the full Lorentzian Hamiltonian con-
straint Ĥus&50 assumes the form of a difference equation
for the coefficientssn @2#

3~gk l P
2 !21@ 1

4 ~11g22!sgn~n18!~V(1/2)un18u2V(1/2)un18u21!kn18
1 kn14

1 sn182sgn~n14!~V(1/2)un14u2V(1/2)un14u21!sn14

22 sgn~n!~V(1/2)unu2V(1/2)unu21!@ 1
8 ~11g22!~kn

2kn14
1 1kn

1kn24
2 !21#sn2sgn~n24!~V(1/2)un24u2V(1/2)un24u21!sn24

1 1
4 ~11g22!sgn~n28!~V(1/2)un28u2V(1/2)un28u21!kn28

2 kn24
2 sn28#50. ~7!

Thanks to the sign factors the coefficients0 of the singular state drops out and can be set equal to zero. In this sense the model
based on loop quantum gravity is singularity-free.

The k’s, coming from the extrinsic curvature contribution to the ‘‘kinetic’’ term of the Hamiltonian, have the following
expressions in terms of volume eigenvalues:

kn
153~g l P

2 !23@~V(1/2)(un11u21)2V(1/2)(un23u21)!~V(1/2)un23u2V(1/2)un23u211V(1/2)un11u2V(1/2)un11u21!

2~V(1/2)(un21u21)2V(1/2)(un25u21)!~V(1/2)un25u2V(1/2)un25u211V(1/2)un21u2V(1/2)un21u21!#, ~8!

and

kn
253~g l P

2 !23@~V(1/2)(un15u21)2V(1/2)(un11u21)!~V(1/2)un11u2V(1/2)un11u211V(1/2)un15u2V(1/2)un15u21!

2~V(1/2)(un13u21)2V(1/2)(un21u21)!~V(1/2)un21u2V(1/2)un21u211V(1/2)un13u2V(1/2)un13u21!# ~9!
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and are subject to the identities

kn
15k2n

2 ~10!

and

kn14
1 5kn

2 . ~11!

These identities make only one kind ofk’s necessary; we
choosek1.

The model under consideration includes a massless scalar
field f. Its classical Hamiltonian in the Friedmann-
Robertson-Walker metric isHf5 1

2 pf
2 a23. When quantized

it becomes@1#

Ĥf~n!52
1

2
\2163~g l P

2!26

3~AV(1/2)unu2AV(1/2)unu21!6
d2

df2
, ~12!

which is the energy operator per unit coordinate volume.
Here the quantization ofuau21 ~5! is crucial for it renders the
classical Hamiltonian finite whena50. In the total Hamil-
tonian Ĥf couples with a sign factor sgn(n) to the gravita-
tional part.

As in @1# we assume the states of the coupled system are
of the form

us&5(
2`

`

sn~f!un&, ~13!

where the dependence onf is contained in the coefficients
sn of the quantum geometry basis vectorsun&. In our calcu-
lations we assume that thef-dependence of the state vector
is given by an eigenfunctionx of the matter Hamiltonian,
characterized byv,

sn~f!5: šnxv~f!ª šnei (v/\)f. ~14!

As we see in the next section, this ansatz results in a finite
difference equation for the model.

III. THE HAMILTONIAN CONSTRAINT EQUATION

The difference equation resulting from the Hamiltonian
constraint~7! is of order 16 so that the naive expectation is
that the solution should contain 16 free parameters. The so-
lution decomposes into four independent series of coeffi-
cients, namelyš4m1 i , i 50, . . . ,3,mPZ, with four free pa-
rameters each. In the series withi 50, š0 drops out, because
its coefficient in the gravitational Hamiltonian contains
sgn~0! and Ĥf(0) is the zero operator by virtue of its con-

struction in terms of uau21ˆ @2,14#. So, for example, forn
58, the Hamiltonian constraint~7! with the matter Hamil-
tonian, does not relates0 to s4 , . . . ,s16, but instead gives a
consistency conditionfor s4 , . . . ,s16, reducing the number
of free parameters from four to three. Thisi 50 series is
considered as fundamental. By applying the ‘‘preclassicality
condition’’ at late times we are able to pick out essentially
unique solutions to the other series. The idea is that, with the

fundamental series, the other three series are selected by
smooth interpolation. Thus, the 16 free parameters are re-
duced to 3. To facilitate the handling of the difference equa-
tion we simplify it by introducing rescaled coefficients

tnª~V(1/2)unu2V(1/2)unu21!šn ~15!

and use the abbreviation

bª
1

4
~11g22!. ~16!

To avoid confusion, we remind the reader thatsn denote the
full coefficients,šn the f-independent parts andtn the res-
caledšn used for solving the Hamiltonian constraint

@Ĥ1sgn~n!Ĥf#( sn~f!us&50. ~17!

The sign factor in front of the matter Hamiltonian as well as
the signs in Eq.~7! give rise to a relative sign between the
two ~classically disjoint! sectors withp.0 and p,0 ~see
@2#!. They render the above constraint equation time sym-
metric, providedĤf(n)5Ĥf(2n). For the moment, we
consider only positive values ofn. By insertingn58 into the
total Hamiltonian constraint equation (Ĥ1Ĥf)(sn(f)us&
50 we obtaint16 in terms oft4 , t8, andt12,

FIG. 1. A solutionšm of Eq. ~19! with initial values t451, t8

5t1250, g50.13, andm54n so that 0<n<800. The pointsšm of
the wave function are connected by lines to clearly display the
oscillatory character.
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t165
1

bk12
1 k16

1 H t122F22b@~k12
1 !21~k8

1!2#1
2048v2

3\g5l P
8

~AV42AV3!6

V42V3
G t81t4J . ~18!

~This is the above-mentioned consistency condition.! The general form of the difference equation forn>12 is

tn185
1

bkn18
1 kn14

1 H tn142F22b@~kn14
1 !21~kn

1!2#1
2048v2

3\g5l P
8

~AV(n/2)2AV(n/2)21!6

V(n/2)2V(n/2)21
G tn1tn242bkn24

1 kn
1
•tn28J . ~19!

Equation~19! is complicated enough~the worst complica-
tions are hidden in thek’s! so that numerical methods are
useful. In Fig. 1 we plot the numerical solution for the initial
conditions t451, t85t1250 and a parameterv such that
2048/3(v2/\g5l P

10)5107. In this numerical solution we use
the value ofg5 ln 2/pA3;0.13@23# for the Immirzi param-
eter@15#. Although the solutions were obtained from the ini-
tial valuest451, t85t1250 the solution is generic in that
the solution is qualitatively the same when the initial values
are varied by as much as 104. In contrast to the Euclidean
case, persistent short-wavelength oscillations continue to late
times—deep into what we would expect to be the semiclas-
sical regime. These short-wavelength oscillations appear to
be superimposed on a smooth function of the same shape as
the Euclidean wave function.

IV. THE CONTINUUM LIMIT

The physical implications of the Lorentzian Hamiltonian
constraint can be deduced without a detailed solution of Eq.
~19!, but from the asymptotic smooth mean-value functions,

which are approximated for large values ofn ~or the vol-
ume!. These functions are solutions of a Wheeler-DeWitt dif-
ferential equation, which can be derived from Eq.~19! as
continuum limit. To distinguish between discrete and con-
tinuous quantities we return the continuous variablep, whose
relation ton is given by Eq.~1!.

We also need some asymptotic expansions,

kn
1;11 3

8

1

n2
511

~g l P
2 !2

96

1

p2
, ~20!

V(1/2)n2V(1/2)n21;2421/2~g l P
2 !3/2n1/25 1

2 g l P
2Ap, ~21!

~AV(1/2)n2AV(1/2)n21!6;~ 3
128 !3/2~g l P

2 !9/2n23/2

5~ 1
4 g l P

2 !6p23/2. ~22!

Assuming thef-dependence to be given by the function
xv(f) of Eq. ~14!, we rewrite the Hamiltonian constraint
~19! in the form

b$kn18
1 kn14

1 tn182@~kn14
1 !21~kn

1!2#tn1kn
1kn24

1 tn28%2~ tn1422tn1tn24!52
2048v2

3\g5l P
8

~AV(1/2)n2AV(1/2)n21!6

V(1/2)n2V(1/2)n21
tn ,

~23!

so that we have two kinds of differences on the left-hand
side, differences of products oft ’s by k’s and differences of
t ’s alone. In the continuous limit for largen the later ones are
second derivatives with respect top. Thanks to the fact that
the k’s are, to order 1/n2, equal to one, the former differ-
ences are also approximated by the second derivative in lead-
ing order. Hence the continuous limit of the left-hand side
becomes

~64b216!
d2t

dn2
5

4l P
4

9

d2t~p!

dp2

in which we write the asymptotic form oftn ast(p). ~For the

moment we pretend thatn is continuous.! Together with the
leading term of the right-hand side this gives a Cauchy-Euler
equation of order 2

p2
d2t~p!

dp2
1

3kv2

4l P
4

t~p!50 ~24!

with the solutions

t~p!5p1/2e6 iV ln p, ~25!

whereV is given by

V5 1
2 A3kv2l P

2421. ~26!
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From this solution we may construct the continuous limit
sv(p,f) of sn(f) from the relation sn(f)5tn /(Vn/2
2Vn/221)xv(f). Taking into account that V(1/2)n
2V(1/2)n21 goes asn1/2 in leading order we have

sv~p,f!5e6 iV ln pe6 i (v/\)f. ~27!

The continuous limit of the wave function is thus the same as
in the Euclidean case@1#. The same is true for the existence
of the critical valuevcrit5 l P

2 /A3k. The behavior of the wave
function is crucially different according to the value ofv.
The wave function only displays the asymptotic oscillatory
behavior whenv.vcrit . The valuevcrit corresponds to a
threshold value of an initial energy of the order of the Planck
energy, concentrated in a volume of the orderl P

3 at the clas-
sical singularity~see@1#, @24#!. Only if such an amount of
energy or more is present is dynamical evolution of the
model possible. Figure 2 shows the approximation of an
asymptotic wave function of the type~27! by a solution of
the Hamiltonian constraint~19! for f50.

V. PRECLASSICALITY

A. Finding the preclassical solution

In @20# it is argued that in loop quantum cosmology there
always exists a ‘‘preclassical’’ solution which is smooth at
late times. To find this solution among the three-parameter
family of the general solution, it is convenient to look at a
different asymptotic limit than achieved in Eq.~24!. This
limit may be found in@20#. But to keep our discussion self-
contained we outline it here. The approximation is based on
replacing thek’s by their asymptotic value of 1 and by con-
sidering the matter contribution to the constraint equation as
small and constant. Indeed, (AVn/22AVn/221)6(Vn/2
2Vn/221)21 goes asn22 for n@1, so this approximation is

valid on finite ranges ofn, determined by the condition that
n22 does not change much on such a range. We define

2Pª
2048v2

3\g5l P
8

~AV(1/2)n2AV(1/2)n21!6

V(1/2)n2V(1/2)n21
, ~28!

which is much smaller than 1 for largen and use the index
m5n/4 in the following.

ConsideringP as constant we obtain an asymptotic differ-
ence equation with constant coefficients instead of a differ-
ential equation,

btm122tm1112~12b1P!tm2tm211btm2250, ~29!

conserving discreteness. An exponential ansatztm5eimq

leads to a quadratic equation for cosq with the approximate
solutions

cosq0'11
P

124b
,

cosq1'
122b

2b
2

P

124b
. ~30!

From this we obtain 4 solutions,e6 imq0 ande6 imq1, where
q0 goes asymptotically to zero andq1 does not. In conse-
quence,e6 imq0 approximate a constant in a range ofm
which is much smaller than the wavelength of the main os-
cillation. On an arbitrary long range these solutions approxi-
mate a smooth solution of Eq.~24!. This solution is called
preclassical. This analysis shows that the asymptotic behav-
ior of the three linearly independent functions obtained from
the three initial parameters is of the form

f WDW
( i ) 1a( i )cosq1m1b( i )sinq1m, i 51,2,3, ~31!

wheref WDW
( i ) is a real,p ~respectivelyn) -dependent part of a

solution of the asymptotic Wheeler-DeWitt equation. For any
linearly independent triple of such functions there is obvi-
ously a unique, nontrivial linear combination in which the
sine and cosine ofq1m cancel.

In the numerical solution extreme fine tuning of the initial
values is necessary to find smooth solutions@25#. It is better
to determine these values indirectly. With our set of 3 initial
values we can produce a variety of solutions, whose average
curves, as shown in Fig. 2, are in arbitrary phase relations
with one another. These smooth functions form the
2-dimensional space of solutions of the asymptotic differen-
tial equation~24!. To determine the preclassical solution we
evolve smooth initial data for sufficiently large values ofn
backwards ton50. For this purpose we may choose any set
of 4 smooth data; every set gives rise to a solution of Eq.
~24! in the asymptotic region. Back evolution yields fairly
smooth functions back to an early domain inn. In this do-
main and earlier the functions begin to oscillate rapidly and,
in general, they do not fulfill the consistency condition~18!

for t4 to t16 and thus forš0 to š16. Constructing two linearly
independent asymptotic solutions, we obtain a basis of solu-
tions of the asymptotic Wheeler-DeWitt differential equation,

FIG. 2. The numerical result~points! and the asymptotic solu-

tion ~solid line! for the f-independent partš4m of the wave func-
tion. The conditions are the same as in Fig. 1 but here 100<m
<1000. On this scale the high frequency oscillations are visible in
the ‘‘cloud’’ of points around the asymptotic solution.
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from which it is possible to construct that linear combina-
tion, which fulfills the consistency condition. This combina-
tion yields the initial dataš4 , š8, and š12, whose forward
evolution, shown in Fig. 3, is the preclassical solution for the
given values ofg and the field energy.

As a practical matter the essential uniqueness of the pre-
classical solution has to be understood within a certain lati-
tude. Late time solutions are very sensitive to small changes
in the initial data forn54,8,12. For instance, the solution
depicted in Fig. 3 is not the optimal one, although it appears
sufficiently smooth in the figure. The solution arises as a
linear combination of two preclassical functions, evolved
back from the late time initial values (š1988,š1992,š1996,
š2000) equal to (1,1,1,1) and (0.7,0.8,0.9,1), respectively. In
this domain ofn these linearly combined initial data are a
sufficiently good approximation to preclassical wave func-
tions ~25!, so that the resulting graphic looks perfectly
smooth. By a slight modification, they could be adjusted to a
smooth asymptotic solution of the form~25! in order to im-
prove the preclassicality of the resulting function. One might
hope that a symmetry principle might select the preclassical
wave function. For instance we might consider data which
are symmetric or antisymmetric about the time of the classi-
cal singularity. As we see in the next section though, neither
of these cases selects a preclassical solution.

B. Evolution through the classical singularity

The absence of singularities in loop quantum cosmology
enables the wave function to evolve through the time of the
classical singularity into a domain with negative values ofn.
Evolving the preclassical wave function backwards reveals a
further essential difference between the Euclidean and
Lorentzian cases: Whenn approaches zero from the positive
side, the amplitude of the wave function begins to increase.
Beyond zero it continues growing and after large and rapid
oscillations the wave function settles down to the superposi-

tion of the two oscillations, already familiar from Figs. 1 and
2. Note, however, that for negativen’s the wave function has
a very large amplitude compared to positiven’s. For our
values ofg and the field energy, the ratio between the am-
plitudes for negative and positive values ofn is of the order
of 1018 ~see Fig. 4!. Naively, the wave function for negative
and positiven suggests that there is vanishing probability of
the preclassical cosmology at positiven.

Near the classical singularity, Lorentzian wave functions
display large oscillations. The larger the energy of the scalar
field, the longer is the ‘‘quantum regime’’ of these oscilla-
tions at positiven’s and the later the preclassical behavior
sets in.

VI. WAVE PACKETS AND DYNAMICS

So far, the functional dependence of the wave function on
the field was assumed to be of the form exp„6 i (v/\)f….
The field being massless and spatially constant,f is formally
equivalent to a configuration variable of a particle with grav-
ity acting as a one-dimensional potential. In this analogy the
critical energy separates free states from bound ones~al-
though we did not define a measure onn to give the wave
functions a proper meaning of a probability amplitude at a
certain value off).

To investigate wave packets inf, made from superposi-
tions of xv’s for different v ’s, we use

sn~f!5 šn•E
2`

`

dve2l(v2v0)2
e2 i (v/\)f ~32!

with v0@vcrit and l@(v02vcrit)
22. The two conditions

assure that the contribution fromv<vcrit is negligible and
no undercritical wave functions are included.

The Wheeler-DeWitt equation being linear, we obtain in
the continuous limit a superposition of functions~27!

FIG. 3. The preclassical solution for the same values ofg and
the field energy as in Fig. 1 forn from 40 to 2000. For smaller
values ofn the amplitude increases. Note the points in the top and
bottom left.

FIG. 4. Continuation of the above preclassical wave function to
21000<m<21.
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s~p,f!5~2pl\2!21/4E
2`

`

dve2l(v2v0)2

3e2 i (v/\)fei /2A(v/vcrit)
221 ln p

'E
2`

`

dve2l(v2v0)2
e2( iv/\)fei /2(v/vcrit) ln p.

With normalization inf with respect to the natural inner
product

^sut&5E
2`

`

dfs* ~p,f!t~p,f!

this leads to the following modulated Gauß function inf:

s~p,f!'~2pl\2!21/4e21/4l[( ln p/2vcrit)2(f/\)] 2

3eiv0[(ln p/2vcrit)2(f/\)] ~33!

with a maximum atf5\ ln p/2vcrit and a width 2Al.
Considering nowp as time variable, we can calculate

p-dependent expectation values off and the~kinetic! field
energy. Forf

^f~p!&5
\

2vcrit
ln p, ~34!

showing a growth during the expansion of the Universe. This
is an indication that in a more sophisticated model with an
inherent notion of particles, like a massive or a spatially
nonconstant field, one could expect particle creation. The
energy expectation value

Ef~p!ª^Ĥf~p!&5K 2
\2

2
p23/2

d2

df2L
5 1

2 ~v0
211/4l!p23/2, ~35!

shows a decreasing field energy per unit coordinate volume.
Remembering the relation~1! between the discrete counter-
part n of p and the scale factora we find that the energy
scales asV21. The energy density per physical volume goes
therefore asV22.

In the above interpretation, when the radius of the Uni-
verse is considered as internal time, there is no problem with
superpositions of expanding and contraction universes or
universes going backwards in time, as it would be, whenf
acted as time. So the choice ofn or p seems to be much more
natural and less problematic—the wave functions and expec-
tation values of the matter field evolve with the scale factor.

VII. CONCLUSIONS

Comparing the present Lorentzian with the Euclidean
Hamiltonian constraint, one notices three similarities:~1!
The asymptotic continuous wave function is of the same
form. ~2! There is the same minimal initial energy~up to
quantum ambiguities in both cases@16#! for dynamical evo-
lution of the wave function.~3! The extension of the quan-

tum regime between the classical singularity and the begin-
ning of a smooth, preclassical evolution increases with
growing matter energy. Therefore the semiclassical limits of
the wave functions coincide. This fact confirms that the dif-
ference between the two versions of the constraint is a quan-
tum ambiguity of the spatially flat Friedmann model.

In the quantum regime, the models differ essentially from
each other. The Euclidean wave function is small near the
singularity, thus satisfying what one could call a ‘‘modified
DeWitt initial condition.’’ The original DeWitt condition en-
sures that the wave function in standard quantum cosmology
stays away from the singularity. The Lorentzian wave func-
tion, on the other hand, although being equal to zero at the
singular state, is large in the immediate vicinity of the clas-
sical singularity. In both cases it is possible to extend the
fundamental series beyond the singularity to negative values
of the discrete internal timen. In the Euclidean case there is
only one solution~up to a normalizing factor!, which is
smooth and symmetric with respect ton. In the Lorentzian
case the unique@26# smooth solution is embedded in a three-
parameter family of Planck-scale varying solutions. Further-
more, preclassicality is only one-sided, i.e. the wave function
is preclassical, at best, forn.0 or n,0. Thus, if we assume
that evolution from arbitrary negative to arbitrary positive
values of the internal time is possible, we come to the fol-
lowing scenario. Whenever a preclassical universe is to
emerge from the considered model, it is preceded by a non-
pre-classical ‘‘fuzzy’’ universe. The latter one contracts to a
state of zero volume and bounces off the singularity. For
very special initial conditions the wave function is reflected
almost completely and a very small fraction, which will be-
have preclassically, enters the domain of positive time. In
other words, provided appropriately adjusted initial condi-
tions, the singularity acts as a ‘‘filter,’’ which keeps back all
‘‘fuzzy’’ impurities and transmits only the purely preclassical
wave function. From the large ratio of the amplitudes of the
fuzzy and the smooth wave functions and from the fact that
there is no preclassical wave function at all unless the pa-
rameters are very fine tuned, it appears that a~pre!classical
universe is very unlikely to emerge from our model. How-
ever, our intuition on probabilities, transition and reflection
does not have a reliable framework. To obtain a sound notion
of probability and, perhaps, of unitary evolution, one needs a
suitable inner product on the space of wave functions.

The absence of singularities and the possibility to evolve
wave functions through a state with zero volume formally
solves a problem of classical cosmology and ‘‘standard quan-
tum cosmology,’’ where the scale factor of the universe is
considered as continuous. Nevertheless our model does not
have a clear interpretation. In fact it raises much the same
kind of questions as standard cosmology. These questions,
however, are rephrased in the context of ILQC in a way
which might prove productive. Above all, there is the ques-
tion of the beginning of the Universe. Is a~pre!classical,
expanding universe preceded by a time-reversed, shrinking
one? To discuss this question, one has to think about whether
in an emphatically non-preclassical evolution the interpreta-
tion of the parametern as internal time makes sense. Does
the internal time pass from large negative values ofn to-
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wards zero, or should we ‘‘see’’ the beginning of the Uni-
verse at the classical singularity? Do the positive and nega-
tive branches of the wave function describe two possible
evolutions of the Universe away from the initial zero-volume
state? Does the huge ratio between the amplitudes of the
non-preclassical and the preclassical wave function indicate
only a tiny probability for a preclassical universe to be cre-
ated? The present model poses some interesting questions for
ILQC. One shortcoming~shared with all homogeneous mod-
els! is that the massless, spatially constant scalar field cannot
imply the notion of particles, so that it is insufficient for the
description of cosmological particle production. Another is

the issue of stability. It would be interesting to investigate
whether these models would be stable under the inhomoge-
neous perturbations.
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