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PHYSICAL REVIEW D 68, 124023 (2003

Isotropic loop quantum cosmology with matter. II. The Lorentzian constraint

Franz Hinterleitner
Department of Theoretical Physics and Astrophysics, Masaryk University,i&k#ld, 611 37 Brno, Czech Republic

Seth Majof
Department of Physics, Hamilton College, Clinton, New York 13323, USA
(Received 18 September 2003; published 29 December)2003

The Lorentzian Hamiltonian constraint is solved for isotropic loop quantum cosmology coupled to a mass-
less scalar field. As in the Euclidean case, the discreteness of quantum geometry removes the classical singu-
larity from the quantum Friedmann models. In spite of the absence of the classical singularity, a modified
DeWitt initial condition is incompatible with a late-time smooth behavior. Further, the smooth behavior is
recovered only for positiver negatives times but not both. An important feature, which is shared with the
Euclidean case, is a minimal initial energy of the order of the Planck energy required for the system to evolve
dynamically. By forming wave packets of the matter field, an explicit evolution in terms of an internal time is
obtained.

DOI: 10.1103/PhysRevD.68.124023 PACS nuni§er04.60.Kz, 98.80.Bp, 98.80.Qc

I. INTRODUCTION closer to the full theory of quantum geomef4].
We concentrate on three aspects of the ILQC framework.
A recent papefl] reports on a quantization of a Euclid- First, the Hamiltonian constraint at early times leads to a
ean cosmology in which a massless scalar field was coupletbnsistency relation for initial data—the “dynamical initial
to a spatially flat Friedmann-Robertson-Walker model. Set irconditions” of [20]. Although the Lorentzian constraint is
the framework of isotropic loop quantum graviiyQC) [2], higher order than the Euclidean constraint, we find the same
this model describes cosmological evolution in terms of arelation in the model. Second, to select an essentially unique
discrete time. This discreteness is a direct consequence of tiselution one may require late time solutions to be smooth. In
kinematics of loop quantum gravity which predicts that geo-such a “preclassical120] state the wave function at late
metric quantities such as ar¢4,7,8], volume [4-6,9,1Q, times does not vary strongly on short intervals. We find that
and angle[11] have a discrete spectrum. [&@] the Hamil-  this criterion again selects an essentially unique solution.
tonian constraint of quantum gravity, expressed in a discretelowever, in contrast with the Euclidean model, evolution
basis of volume eigenfunctions, and the matter Hamiltoniarbackwards to negative time destroys the preclassical condi-
act on the state function of the coupled system. This modeion. Third, an unexpected feature and, at the same time the
avoids the classical singularity. Because of the quantizatiomain result of[1], is the occurrence of a threshold for dy-
of the inverse scale factor of the Friedmann mdd&l] the  namical evolution of the model. For the wave function to
total Hamiltonian constraint vanishes at the classical singuhave a dynamical interpretation with respect to an internal
larity. At small values of the volume the wave function dis- time there is a minimal energy on the order of the Planck
plays a distinct discrete behavior. Nevertheless as the volumenergy, concentrated initially in a volume of the size of a
of the model grows, the wave function approaches a continuPlanck volume.
ous function which is a solution of the asymptotic Wheeler-  Scalar field quantum cosmology was first considered by
DeWitt differential equation. The wave function thereby Blyth and Isham[3]. Canonically quantizing the reduced
meets the semiclassicality requirements of quantum cosmomodel, they explored the dynamics for several choices of
ogy [12]. time. The current work is in sharp contrast to this older work
In the present paper we investigate thwentzianHamil-  in that the discreteness of ILQG manifests itself in early
tonian constraint for the same massless scalar field modé&imes and completely changes the status of initial conditions
which is constructed along the prescriptions of the generabf the cosmological model.
theory[21], as it was introduced iR2]. In the spatially flat As we are dealing with a generalization of the framework
Friedmann model, however, the classical full Lorentzian conof [1] in Sec. Il we present the prerequisites very briefly. In
straint is proportional to the Euclidean one, so there is &ec. lll the discrete Hamiltonian constraint is solved numeri-
guantum ambiguity and one can, as in recent W®#g], cally and the solutions are discussed. In Sec. IV the
alternatively consider the Euclidean constraint operator proasymptotic Wheeler-DeWitt equation and its solutions are
portional to the full one. In the semiclassical regime the reconstructed and compared with the Euclidean case. In Sec. V
sults of both versions converge. The choice in this paper ian essentially unique wave function with a sufficiently
smooth late time behavior to represent a classical universe, is
singled out from the general solution of the Hamiltonian con-
*Electronic address: franz@physics.muni.cz straint. Section VI contains a study of possible wave packets
TElectronic address: smajor@hamilton.edu in the scalar field and their classical interpretation.

0556-2821/2003/682)/1240238)/$20.00 68 124023-1 ©2003 The American Physical Society



F. HINTERLEITNER AND S. MAJOR PHYSICAL REVIEW D68, 124023 (2003

Il. PRELIMARIES: LOOP QUANTUM COSMOLOGY

6
We start with a quantization of the spatially flat n=_—3P )

Friedmann-Robertson-Walker model with a scalar field as

matter source. The metric ) _ _ o
In this basis the inverse scale factor operator, which is

constructed independently fro\ is also diagonal12],
ds?= —dt?+a?(t)[ dx2+ dy?+ dz?]

lal =Yy =16(413) % Wy = VVazyn-1)2n).

represents a homogeneous, isotropic model with one dy- (

namical degree of freedom, represented, for example, by the

scale factora(t) and its canonically conjugate momentum. Thjs, in contrast to the inverse of the scale factor operator, is

In the framework of loop quantum gravity, applied to isotro- 5 densely defined operator on the Hilbert space spanned by

pic modeld2], the metric variabla(t) is replaced by a triad  the basis{|n)}.

variablep. This triad variable can assume both Signs accord- For the purposes of eva|uating the Hamiltonian constraint

ing to the two possible orientations of a triad. By defining the most important feature of this construction is that the
pi=alsgr(a) 2 eigenvalue zero of the volume is threefold degenerate, as can

be seen from Eq23), it vanishes irf0) and in|+ 1), whereas

the domain ofa now extends to negative values. The conju-the eigenvalue of |a| ! is zero only or|0). The latter state

gate momentum is assumes the role analogous to the classical singularity
=0. The vanishing of the inverse scale factor is a pure quan-
1. tum feature, in sharp contrast to the divergence of the clas-
c=-a. 2 . : p 9
2 sicala™* for a=0.

An arbitrary statgs) of the cosmological model can be

Isotropic loop quantum cosmolody] yields a discrete expressed as

basis|n) of volume eigenstates,

. 1 3/2 o
SIm=( 5 2] T DR D) 9=3 sin. ©

=Vazn-2)In), @ Inthe ILQC framework the full Lorentzian Hamiltonian con-

where the integers label discrete values qf (or the scale straintH|s)=0 assumes the form of a difference equation
facton for the coefficientss, [2]

3(yxl3) i (1+ 5 2)sgnn+8)(V(wzn+s— Viwzyn+sl—1)Knt gkt aSns = SIMN+4) (V(1yn+ 4/~ Vu2)n+ 4 1) Sn+ 4
—25grn) (V(a2yn = Vwzyn -5 (1+ Y 2 (K Knsat Ko Koo g)— 1]sy—=sgrin—4)(V(12)n-4= V(12)n—4/-1)Sn-4
+ 7 (1+y7)sgr(n—8)(V(iz)n-8~ V(w2)n—5| - 1)Kn—gKn—aSn—8]=0. (7
Thanks to the sign factors the coefficiesgtof the singular state drops out and can be set equal to zero. In this sense the model
based on loop quantum gravity is singularity-free.

The k’s, coming from the extrinsic curvature contribution to the “kinetic” term of the Hamiltonian, have the following
expressions in terms of volume eigenvalues:

2 —
Kn =313 [ (Vs 1/-1~ Vzyin-3-1) (Vazin-3~ V-3 -1 Ve 1~ Vwzne1-1)
—(Vayn-1-1~ Vwyin-s/-1)) Vwzin-s = Vzn-s -1+t Vzn-1~ Vwzn-1-1 1 (8)
and
Ky =3( 7'%)73[(V(1/2)(|n+5|—1)_V(1/2)(|n+1|—1))(V(1/2)|n+1|_V(1/2)\n+1\—1+V(1/2)\n+5|_V(l/2)\n+5\—l)

—(Vazygn+3-1~ Varyin-1-1)Vazin-1=Vazin-1-1T Vazn+ts = Vazntz-1)] 9

124023-2
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and are subject to the identities

ki =k, (10
and
Kiya=K, . (11)
These identities make only one kind kls necessary; we
choosek™. 1
The model under consideration includes a massless scalar
field ¢. Its classical Hamiltonian in the Friedmann-
Robertson-Walker metric isl ¢=%pfﬁa‘3. When quantized J

it becomeqd 1]

. 1
Ay(n)=—5#%16%(y17)~°

d2
X (W yn— \/V(llz)\n\—l)edfﬁz, (12

which is the energy operator per unit coordinate volume.
Here the quantization d&| ! (5) is crucial for it renders the
classical Hamiltonian finite whea=0. In the total Hamil-

tonian I:|¢, couples with a sign factor sgnj to the gravita- , r v

tional part 0 50 100 150 200
As in [1] we assume the states of the coupled system are Fig. 1. A solutions,, of Eq. (19) with initial valuest,=1, tg
of the form =t,,=0, y=0.13, andn=4n so that B=n=<800. The points,, of
o the wave function are connected by lines to clearly display the
|s>:2 s (¢)|n) (13 oscillatory character.
n )

where the dependence @his contained in the coefficients
s, of the quantum geometry basis vectom$. In our calcu-
lations we assume that thi-dependence of the state vector
is given by an eigenfunctioly of the matter Hamiltonian,
characterized byv,

fundamental series, the other three series are selected by
smooth interpolation. Thus, the 16 free parameters are re-
duced to 3. To facilitate the handling of the difference equa-
tion we simplify it by introducing rescaled coefficients

Sn(}) =:SnXo( D) :=S,e' (WM, (14) tns=(V(w2yn = V(w2 -1)Sn (15

As we see in the next section, this ansatz results in a finitgmd use the abbreviation
difference equation for the model.

1
IIl. THE HAMILTONIAN CONSTRAINT EQUATION ﬁ:zz(l-‘r y_z). (16)

The difference equation resulting from the Hamiltonian
constraint(7) is of order 16 so that the naive expectation isTo avoid confusion, we remind the reader teaidenote the
that the solution should contain 16 free parameters. The sqy|| coefficients,s, the ¢-independent parts artg the res-
lution decompzoses into four independent series of Coembaledén used for solving the Hamiltonian constraint
cients, namelys, i, i =0, ...,3,meZ, with four free pa-
rameters each. In the series with 0, éo drops out, because - .
its coefficient in the gravitational Hamiltonian contains [A+sgrinHy] su(4)|s)=0. (17)

sgn0) and I:|¢,(O) is the zero operator by virtue of its con-
The sign factor in front of the matter Hamiltonian as well as

struction in terms of |a] ! [2,14]. So, for example, fon i . T : .
lal"" [2.14 P the signs in Eq(7) give rise to a relative sign between the

=8, the Hamiltonian constrain7) with the matter Hamil- N lassically disioi ; ithp>0 andp=0
tonian, does not relatg, to sy, . . . ,S16, but instead gives a wo (classically disjoint sectors withp andp (see

consistency conditiofor s,, . .. S, reducing the number [2). .They re.nderA the abqve constraint equation time sym-
of free parameters from four to three. THis 0 series is Metric, providedH,(n)=H,(—n). For the moment, we
considered as fundamental. By applying the “preclassicalityconsider only positive values of By insertingn=8 into the
condition” at late times we are able to pick out essentiallytotal Hamiltonian constraint equatior1—|(|—H¢)Esn(¢>)|s>
unique solutions to the other series. The idea is that, with the=0 we obtaintg in terms oft,, tg, andt,,,

124023-3
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20480% (W4~ \V3)°

3h9%18 V4= V3

2= Bl(kyp)*+ (kg )1+

thZ—[tlz_ t8+t4] . (18)
BKi K16

(This is the above-mentioned consistency condijidime general form of the difference equation for 12 is

204802 (VV(n2y= VViniz)-1)°

329°18 V= Viz)-1

2= Bl(knr2)?+ (ky)21+

tn+8:W{tn+4_ tn+tn4—/3k;4k;-tn8}. (19

n+8™n+4

Equation(19) is complicated enougkthe worst complica- which are approximated for large values wf(or the vol-
tions are hidden in th&'s) so that numerical methods are ume. These functions are solutions of a Wheeler-DeWitt dif-
useful. In Fig. 1 we plot the numerical solution for the initial ferential equation, which can be derived from Ef&9 as
conditionst,=1, tg=t;,=0 and a paramete® such that continuum limit. To distinguish between discrete and con-
2048/3w?/% y5|é°)=107. In this numerical solution we use tinuous quantities we return the continuous variah)l@hose
the value ofy=In 2/7/3~0.13[23] for the Immirzi param-  relation ton is given by Eq.(1).

eter[15]. Although the solutions were obtained from the ini-  \We also need some asymptotic expansions,

tial valuest,=1, tg=t;,=0 the solution is generic in that

the solution is qualitatively the same when the initial values N s 1 (Y13 1
are varied by as much as“0n contrast to the Euclidean Ko ~1+ 3 ﬁ:1+ 96 E
case, persistent short-wavelength oscillations continue to late

times—deep into what we would expect to be the semiclas- _ o2 12\32,1/2_ 1 12

sical regime. These short-wavelength oscillations appear to Vian—Vazn-1~24 Y713 3nY=3 11%\p, (21)
be superimposed on a smooth function of the same shape as
the EScIidegn wave function. i (\fV(1/2)n_ \/V(1/2)n—1)6“(%3)3/2( Y g)g/zn—s/z

- 3/2_ (22)

(20

_ /1 2\6
IV. THE CONTINUUM LIMIT =(z7p)°P

The physical implications of the Lorentzian Hamiltonian Assuming the¢-dependence to be given by the function
constraint can be deduced without a detailed solution of Eqy,(¢#) of Eq. (14), we rewrite the Hamiltonian constraint
(19), but from the asymptotic smooth mean-value functions(19) in the form

204802 (VV(1230— VV (/20— 1)6,[
319°18  Vwan— V-1

(23

,B{k;+8k;+4tn+8_ [(k:+4)2+ (k;)z]tn"' krT kr::4tn—8}_ (tn+4_ 2tn"‘tn74) =

so that we have two kinds of differences on the left-handmoment we pretend thatis continuous. Together with the
side, differences of products 6% by k’'s and differences of leading term of the right-hand side this gives a Cauchy-Euler
t’s alone. In the continuous limit for largethe later ones are equation of order 2

second derivatives with respect po Thanks to the fact that

the k's are, to order 1%, equal to one, the former differ- zdzt(p) 3Kkw?

ences are also approximated by the second derivative in lead- 0o’ + Al t(p)=0 (24)
ing order. Hence the continuous limit of the left-hand side P P
becomes . .
with the solutions
d?t 414 d?t(p) t(p)=pe P, (25)
(648—16)— = —
dn? 9 dp? o
where(} is given by
in which we write the asymptotic form af, ast(p). (For the Q= 33k0?*-1. (26)

124023-4
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valid on finite ranges oh, determined by the condition that
n~2 does not change much on such a range. We define

_ 20480% (VV(1250n— VV(112)n-1)°
319°18 V= Vwzn-1

: (28)

which is much smaller than 1 for largeand use the index
m=n/4 in the following.

Considering? as constant we obtain an asymptotic differ-
ence equation with constant coefficients instead of a differ-
ential equation,

ﬁtm+2_tm+1+2(1_ﬁ+ P)tm_tm—1+ﬁtm—2:0, (29)

imd

: ‘ ‘ , , conserving discreteness. An exponential andgiz e
200 400 600 800 1000 leads to a quadratic equation for absvith the approximate
m .
solutions

FIG. 2. The numerical resulpointy and the asymptotic solu-

tion (solid line) for the ¢-independent pars,,, of the wave func- cosdo~1+
1

tion. The conditions are the same as in Fig. 1 but here<ifi0 —4p’
=<1000. On this scale the high frequency oscillations are visible in
the “cloud” of points around the asymptotic solution. 1-2p8 P
cosh~—F7—————. (30
2B 1-4p

From this solution we may construct the continuous limit _ _
s,(p,¢) of s,(¢) from the relation s,(¢)=t,/(V,2  From this we obtain 4 solutiong” ™% ande*™?1, where
—Vie-1)Xe(¢). Taking into account that V), ¥y goes asymptotically to zero and;, does not. In conse-

—V(12n-1 go€S a2 in leading order we have quence,e*'™m% approximate a constant in a range of
which is much smaller than the wavelength of the main os-
s, (p, @) =e 1 nperi(w/h)e, (27 cillation. On an arbitrary long range these solutions approxi-

mate a smooth solution of E¢24). This solution is called

The continuous limit of the wave function is thus the same agreclassical. Th[s analy_sis shows that th? asymptc_)tic behav-
in the Euclidean casil]. The same is true for the existence 1 of the three linearly independent functions obtained from

of the critical valueryc,n:I%/\/SK. The behavior of the wave the three initial parameters is of the form
function is cruqally dlﬁergnt according to the _value _of fWDWJr acos®,m+bDsind,m, i=12,3, (31
The wave function only displays the asymptotic oscillatory

behavior whenw> w.;. The valuew.; corresponds to a Whereff,i\,)DW is a real p (respectivelyn) -dependent part of a
threshold value of an i_nitial energy of the order of the Plancky | tion of the asymptotic Wheeler-DeWitt equation. For any
energy, concentrated in a volume of the ortieat the clas-  |inearly independent triple of such functions there is obvi-
sical singularity(see[1], [24]). Only if such an amount of = 5ysly 3 unique, nontrivial linear combination in which the
energy or more is present is dynamical evqlutlc_)n of thegine and cosine off,m cancel.

model possible. Figure 2 shows the approximation of an | the numerical solution extreme fine tuning of the initial
asymptotic wave function of the typ@7) by a solution of  y1yes is necessary to find smooth solutif2s]. It is better

the Hamiltonian constraintl9) for ¢=0. to determine these values indirectly. With our set of 3 initial
values we can produce a variety of solutions, whose average

V. PRECLASSICALITY curves, as shown in Fig. 2, are in arbitrary phase relations

o _ ) with one another. These smooth functions form the

A. Finding the preclassical solution 2-dimensional space of solutions of the asymptotic differen-

In [20] it is argued that in loop quantum cosmology theretial equation(24). To determine the preclassical solution we
always exists a “preclassical” solution which is smooth atevolve smooth initial data for sufficiently large valuesrof
late times. To find this solution among the three-parametepackwards ta=0. For this purpose we may choose any set
family of the general solution, it is convenient to look at a of 4 smooth data; every set gives rise to a solution of Eq.
different asymptotic limit than achieved in E¢4). This  (24) in the asymptotic region. Back evolution yields fairly
limit may be found in[20]. But to keep our discussion self- smooth functions back to an early domainrinin this do-
contained we outline it here. The approximation is based ofnain and earlier the functions begin to oscillate rapidly and,
replacing thek’s by their asymptotic value of 1 and by con- in general, they do not fulfill the consistency conditic8)
sidering the matter contribution to the constraint equation afor t, to t;5 and thus fors, to S;5. Constructing two linearly
small and constant. Indeed, V¥~ VWVnho-1)8(V,>  independent asymptotic solutions, we obtain a basis of solu-
—Vp-1) ! goes an~ 2 for n>1, so this approximation is tions of the asymptotic Wheeler-DeWitt differential equation,

124023-5
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~1000 800 —600 —400 ~200 0

100 200 300 400 500
m
FIG. 4. Continuation of the above preclassical wave function to

FIG. 3. The preclassical solution for the same valuey @ind 1000<m=—1.

the field energy as in Fig. 1 fan from 40 to 2000. For smaller
values ofn the amplitude increases. Note the points in the top and
bottom left. tion of the two oscillations, already familiar from Figs. 1 and
2. Note, however, that for negatives the wave function has
from which it is possible to construct that linear combina- 5 very large amplitude compared to positias. For our
tion, which fulfills the consistency condition. This combina- y3jyes ofy and the field energy, the ratio between the am-
tion yields the initial dates,, sg, ands;,, whose forward plitudes for negative and positive valuesrofs of the order
evolution, shown in Fig. 3, is the preclassical solution for theof 10'8 (see Fig. 4 Naively, the wave function for negative

given values ofy and the field energy. and positiven suggests that there is vanishing probability of
As a practical matter the essential uniqueness of the prene preclassical cosmology at positine

tude. Late time solutions are very sensitive to small changegjsplay large oscillations. The larger the energy of the scalar
in the initial data forn=4,8,12. For instance, the solution field, the longer is the “quantum regime” of these oscilla-

dep_ic_ted in Fig. 3 is not the _optimal one, although _it appe€arions at positiven’s and the later the preclassical behavior
sufficiently smooth in the figure. The solution arises as

linear combination of two preclassical_functions, evolved
back from the late time initial valuess{ygs,S1992:S1996:
ézoo& equal to (1,1,1,1) and (0.7,0.8,0.9,1), respectively. In
this domain ofn these linearly combined initial data are a  So far, the functional dependence of the wave function on
sufficiently good approximation to preclassical wave func-the field was assumed to be of the form exp(w/#%) ¢).
tions (25), so that the resulting graphic looks perfectly The field being massless and spatially constarig formally
smooth. By a slight modification, they could be adjusted to sequivalent to a configuration variable of a particle with grav-
smooth asymptotic solution of the for(®5) in order to im- ity acting as a one-dimensional potential. In this analogy the
prove the preclassicality of the resulting function. One mightcritical energy separates free states from bound daés
hope that a symmetry principle might select the preclassicahough we did not define a measure o give the wave
wave function. For instance we might consider data whichfunctions a proper meaning of a probability amplitude at a
are symmetric or antisymmetric about the time of the classicertain value ofg).

cal singularity. As we see in the next section though, neither To investigate wave packets i, made from superposi-
of these cases selects a preclassical solution. tions of y,,’'s for different w’s, we use

VI. WAVE PACKETS AND DYNAMICS

B. Evolution through the classical singularity

—o0

The absence of sing_ularities in loop quantum c_osmology Sn(¢):én'f dwe Me—wg)g=i(w/h)d (32)
enables the wave function to evolve through the time of the

classical singularity into a domain with negative values.of

Evolving the preclassical wave function backwards reveals a

further essential difference between the Euclidean anwvith wo>we; and A>(wo— wqi) “2. The two conditions
Lorentzian cases: Wheamapproaches zero from the positive assure that the contribution from=< w,;; is negligible and
side, the amplitude of the wave function begins to increaseno undercritical wave functions are included.

Beyond zero it continues growing and after large and rapid The Wheeler-DeWitt equation being linear, we obtain in
oscillations the wave function settles down to the superposithe continuous limit a superposition of functio(&)

124023-6
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tum regime between the classical singularity and the begin-
ning of a smooth, preclassical evolution increases with
growing matter energy. Therefore the semiclassical limits of

s(p,cp):(zmﬁz)—lf“f doe M@~ w0

« @10/t dgil2\(wlogi)?~1Inp the wave functions coincide. This fact confirms that the dif-
ference between the two versions of the constraint is a quan-
-~ dwe ™ Me—w0)?g=(iw/h)dgi/2(w/weiin p tum ambiguity of the spatially flat Friedmann model.
o ' In the quantum regime, the models differ essentially from

each other. The Euclidean wave function is small near the
With normalization in¢ with respect to the natural inner singularity, thus satisfying what one could call a “modified

product DeWitt initial condition.” The original DeWitt condition en-
sures that the wave function in standard quantum cosmology
slt) = debs* (p. d)t(p, stays away from the singularity. The'Lorent2|an wave func-
{slt) le 57 (p.H)U(p.4) tion, on the other hand, although being equal to zero at the
. _ o singular state, is large in the immediate vicinity of the clas-
this leads to the following modulated Gauf? functiongin sical singularity. In both cases it is possible to extend the
fundamental series beyond the singularity to negative values
- - Werit) — 2 . . . . .
S(p, @)= (2mA\h?) ™ Vg™ VAN plwer) = (4/7)] of the discrete internal time. In the Euclidean case there is
@l @ol(In pl2wi) —(41h)] (33) only one solution(up_to a normalizing factgr which _is
smooth and symmetric with respect 1o In the Lorentzian
with a maximum aip=7 In p/2w.; and a width 2/x. case the uniquE26] smooth solution is embedded in a three-

Considering nowp as time variable, we can calculate Parameter family of Planck-scale varying solutions. Further-

p-dependent expectation values ¢fand the(kinetic) field ~ More, preclassicality is only one-sided, i.e. the wave function
energy. Forg is preclassical, at best, for>0 orn<0. Thus, if we assume

that evolution from arbitrary negative to arbitrary positive
values of the internal time is possible, we come to the fol-
(¢(p))=5_—Inp, (349 lowing scenario. Whenever a preclassical universe is to
ort emerge from the considered model, it is preceded by a non-
showing a growth during the expansion of the Universe. Thigre-classical “fuzzy” universe. The latter one contracts to a
is an indication that in a more sophisticated model with arstate of zero volume and bounces off the singularity. For
inherent notion of particles, like a massive or a spatiallyvery special initial conditions the wave function is reflected
nonconstant field, one could expect particle creation. Th@lmost completely and a very small fraction, which will be-

energy expectation value have preclassically, enters the domain of positive time. In
other words, provided appropriately adjusted initial condi-

. h? 3 o? tions, the singularity acts as a “filter,” which keeps back all

Ey(p):=(Hy(p))= 5P dez “fuzzy” impurities and transmits only the purely preclassical

wave function. From the large ratio of the amplitudes of the
— L (w2+1/4\)p 32 (35) fuzzy gnd the smoot_h wave functions and from the fact that
there is no preclassical wave function at all unless the pa-

shows a decreasing field energy per unit coordinate volumdameters are very fine tuned, it appears thgpra)classical
Remembering the relatiofl) between the discrete counter- universe is very unlikely to emerge from our model. How-
part n of p and the scale factoa we find that the energy €Ver, our intuition on probabilities, transition and reflecuo_n
scales a¥ ~L. The energy density per physical volume goesdoes not have a reliable framework. To obtain a sound notion
therefore as/ 2. of probability and, perhaps, of unitary evolution, one needs a
In the above interpretation, when the radius of the Uni-Suitable inner product on the space of wave functions.
verse is considered as internal time, there is no problem with The absence of singularities and the possibility to evolve
superpositions of expanding and contraction universes ofave functions through a state with zero volume formally
universes going backwards in time, as it would be, wigen Solves a problem of classical cosmology and “standard quan-
acted as time. So the choicerbr p seems to be much more tUm cosmology,” where the scale factor of the universe is
natural and less problematic—the wave functions and expe@onadered as continuous. Nevertheless our model does not

tation values of the matter field evolve with the scale factorhave a clear interpretation. In fact it raises much the same
kind of questions as standard cosmology. These questions,

VIl. CONCLUSIONS hoyvever., are rephrased in the context of ILQ_C in a way
which might prove productive. Above all, there is the ques-
Comparing the present Lorentzian with the Euclideantion of the beginning of the Universe. Is (@re)classical,
Hamiltonian constraint, one notices three similaritiés)  expanding universe preceded by a time-reversed, shrinking
The asymptotic continuous wave function is of the sameone? To discuss this question, one has to think about whether
form. (2) There is the same minimal initial energyp to  in an emphatically non-preclassical evolution the interpreta-
guantum ambiguities in both casgl6]) for dynamical evo- tion of the parameten as internal time makes sense. Does
lution of the wave function(3) The extension of the quan- the internal time pass from large negative valuesndb-
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wards zero, or should we “see” the beginning of the Uni- the issue of stability. It would be interesting to investigate
verse at the classical singularity? Do the positive and negawvhether these models would be stable under the inhomoge-
tive branches of the wave function describe two possibleneous perturbations.

evolutions of the Universe away from the initial zero-volume
state? Does the huge ratio between the amplitudes of the
non-preclassical and the preclassical wave function indicate
only a tiny probability for a preclassical universe to be cre- The authors thank Martin Bojowald for helpful discus-
ated? The present model poses some interesting questions &ons. F.H. would like to acknowledge Hamilton College for
ILQC. One shortcomingshared with all homogeneous mod- hospitality and the Czech Ministry of Education for support
els is that the massless, spatially constant scalar field canng€ontract No. 143100006S.M. thanks the Perimeter Insti-
imply the notion of particles, so that it is insufficient for the tute for hospitality and support. S.M. acknowledges support
description of cosmological particle production. Another isfrom the Research Corporation.
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