Hamilton College Hamilton Digital Commons

Posters

4-2022

The Impossible Theorem of Fairness

Man Nguyen '22

Follow this and additional works at: https://digitalcommons.hamilton.edu/posters

Part of the Mathematics Commons

Introduction

With the growth of machine learning, there has been an increase of machine biases that can cause wrongful discrimination. In the case of implementing "fairness," several conceptions of bias were created to target a fair system. However, statisticians have found that these conceptions contradict one another. Thus, we run into an impossible conundrum of fairness in machine learning. In cases that high risk, we want to investigate the best fairness measures if one is possible. Moreover, we would like to determine when these fairness measures fail or what conditions must be met for them to succeed.

Background Information

Impossible Theorem - states that no more than one of the three fairness metrics of demographic parity, predictive parity and equalized odds can hold at the same time for a well calibrated classifier and a sensitive attribute capable of introducing machine bias.

Theorem (Impossibility Result [26]). Let h_1 and h_2 be classifiers for groups G_1 and G_2 with $\mu_1 \neq \mu_2$. h_1 and h_2 satisfy the Equalized Odds and calibration conditions if and only if h_1 and h_2 are perfect predictors.

Definitions:

Let $P \subset \mathbb{R}^k \times \{0, 1\}$ be the input space of a binary classification task. Assume there are two groups $G_1, G_2 \subset P$, which represent disjoint population subsets and that they have different base rates μ_{1} , or probabilities of belonging to the positive class:

 $\mu_1 = P_{(x,y)\sim G1}[y=1] \neq P_{(x,y)\sim G2}[y=1] = \mu_2$. Let $h_1, h_2: \mathbb{R}^k \to [0, 1]$ be binary classifiers, where h_1 classifies samples from G_1 and h_2 classifies samples from G_2 .

Definition 1 (Kleinberg[1]). The generalized false-positive rate of classifier h_1 for group G_1 is $c_{f_0}(h_1) = E_{(x,y) \sim G_t}[h_t(x) | y = 0]$. Similarly, the generalized false-negative rate of classifier h_t is $c_{fn}(h_1) = E_{(x,y)\sim Gt} [1 - h_t(x) | y = 0].$

Definition 2 (Probabilistic Equalized Odds Kleinberg[2]). Classifiers h_1 and h_2 exhibit Equalized Odds for groups G_1 and G_2 if $c_{f_0}(h_1) = c_{f_0}$ (h_{2}) and $c_{fn}(h_{1}) = c_{fn}(h_{2})$.

Definition 3 (Calibration Kleinberg[3]). A classifier h₊ is perfectly calibrated if $\forall \rho \in [0, 1], P_{(x,y)\sim Gt}[y=1 \mid h_t(x) = \rho] = \rho.$

The Impossible Theorem of Fairness

Man Nguyen

