Hamilton College [Hamilton Digital Commons](https://digitalcommons.hamilton.edu/)

[Posters](https://digitalcommons.hamilton.edu/posters)

4-2022

The Impossible Theorem of Fairness

Man Nguyen '22

Follow this and additional works at: [https://digitalcommons.hamilton.edu/posters](https://digitalcommons.hamilton.edu/posters?utm_source=digitalcommons.hamilton.edu%2Fposters%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.hamilton.edu%2Fposters%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages)

The Impossible Theorem oÿ Fairness

Impossible Theorem - states that no more than one of the three fairness metrics of demographic parity, predictive parity and equalized odds can hold at the same time for a well calibrated classifier and a sensitive attribute capable of introducing machine bias.

Theorem (Impossibility Result [26]). Let h_j and h_2 be classifiers for \blacksquare groups G_1 and G_2 with $\mu_1 \neq \mu_2$. h_1 and h_2 satisfy the Equalized Odds and calibration conditions if and only if h_j and h_j are perfect predictors.

 μ_{1} = **P**_{(x,y)∼G1} [y = 1] ≠ **P**_{(x,y)∼G2} [y = 1] = μ₂. Let h₁, h₂: ℝ^k → [0, 1] be binary classifiers, where h_j classifies samples from G_j and $h_{\overline{2}}$ classifies samples from $G_{2^{\lambda}}$.

Definition 1 (Kleinberg[1]). The generalized false-positive rate of classifier h_j for group G_j is c_{f_p} (h_j) = $E_{(x,y)\sim Gt}$ [h_t (x) | y = 0]. Similarly, the generalized false-negative rate of classifier $h_{t}^{}$ is c_{fn} (h₁) = $E_{(x,y)\sim Gt}$ [1 - h_t(x) | y = 0].

Definition 2 (Probabilistic Equalized Odds Kleinberg[2]). Classifiers h_j and h_j exhibit Equalized Odds for groups G_j and G_j if $c_{f\rho}^{}(h_j)$ = $c_{f\rho}^{}(h_j)$ (h₂) and c_{f_0} (h₁) = c_{f_0} (h₂).

Definition 3 (Calibration Kleinberg[3]). A classifier h_t is perfectly calibrated if $\forall \rho \in [0, 1], P_{(x,y)\sim Gt} [y = 1 | h_t(x) = \rho] = \rho$.

Introduction Introduction

With the growth of machine learning, there has been an increase of machine biases that can cause wrongful discrimination. In the case of implementing "fairness," several conceptions of bias were created to target a fair system. However, statisticians have found that these conceptions contradict one another. Thus, we run into an impossible conundrum of fairness in machine learning. In cases that high risk, we want to investigate the best fairness measures if one is possible. Moreover, we would like to determine when these fairness measures fail or what conditions must be met for them to succeed.

Background Information

Definitions:

Let $P \subset \mathbb{R}^k \times \{0, 1\}$ be the input space of a binary classification task. Assume there are two groups $G_{_I}$, $G_{_2} \subset P$, which represent disjoint population subsets and that they have different base rates $\mu_{_I}$, or probabilities of belonging to the positive class:

