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ABSTRACT
Software De�ned Perimeter (SDP) is a zero-trust network-isolation
defense technique which aims to limit security risks by giving dy-
namic account type assignments to network users. Despite SDP
being proven as an e�ective defense strategy in various domains, it
has yet to see wide-spread use due to its drawbacks. One of SDP’s
most pressing issues is the need for an expert to manually con�gure
it for each unique application. Here we describe a novel system for
designing SDP networks called SDPush which can automatically
design and analyze possible con�gurations for a given network
with user-speci�cations. Since there is not a systematic approach
for account type design and assignment, we develop a two-step
optimization system consisting of a bitstring genetic algorithm and
a genetic programming sub-system for designing and evaluating
SDP networks respectively. In order to evolve an SDP con�guration
exhibiting the user-speci�ed characteristics while also minimizing
security risk, we implement our system to support multi-objective
search spaces by providing the system’s training set with di�erent
cases aimed at evaluating di�erent aspects of the network con�g-
uration. We present initial results of experiments on networks of
varying size and characteristic requirements.

CCS CONCEPTS
• Security and Privacy! Vulnerability Management; • Evo-
lutionary Computation;

KEYWORDS
evolutionary computation, decision making, cybersecurity, net-
works

1 INTRODUCTION
In 2023, 3205 data records were compromised with each resulting
in a net-loss of approximately 4.45 million USD on average [1,
2]. Every year the severity and frequency of these data breaches
increases. These data breaches can occur from intentional means e.g.
malware intrusions, or from inadvertent means e.g. the accidental
publication of sensitive documents or information [4]. Recently,
network defense techniques have aimed to 1) mitigate the frequency
and severity of such events, 2) maintain applicability to various
use-cases, and 3) a�ect user-experience minimally.

Software-De�ned Perimeter (SDP) is a zero-trust network-isolation
defensemodel/frameworkwhich shows promise in addressing these
areas. SDP dynamically con�gures one-to-one user-data connec-
tions as needed, reducing the number of resources which can be

attacked per compromised user while maintaining access to re-
sources for a majority of users [20]. An SDP is con�gured by as-
signing roles, which can represent account types, to users, which
dictate acceptable user-behavior and accessible resources, repre-
sented as connections/edges in the network. In other words, these
account types act as a gateway between network users and net-
work resources [20]. Con�guring an SDP can be considered an
optimization problem because the goal when con�guring an SDP
is to minimize the number of roles needed to minimize the security
risks of the network.

Figure 1: An example of an SDP con�guration on a network
where users are either employees, managers, or administra-
tion.

In this paper, we devise, implement, and experiment with a novel
system called SDPush which can automatically con�gure and ana-
lyze SDP networks with user-speci�cations.1 In doing so, we tackle
the following research questions:
RQ1. Designing SDPs: How do we automatically design and op-

timize potential SDP networks?

1This work was submitted to the GECCO 2024 EC + DM Workshop Confer-
ence. The abridged version of this report can be found at the following DOI:
10.1145/3638530.3664155. This report is cited as follows in the GECCO 2024 version [8]
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RQ2. Evaluation: How do we evaluate potential SDP networks?
What are computationally cost-e�ective methods for doing
so?

RQ3. Interpretation: How can we represent the SDP networks
and choices made by the system in an interpretable manner?

RQ4. Limitations: What are the limitations of the our system in
terms of the usefulness to an expert in their decision making
process?

To address RQ1, we consider what must be given in order to
de�ne a unique network along with its desired characteristics. Fur-
thermore, we consider what should be designed by the system
(e.g. the number of account types, the count of users with an ac-
count type, permissions an account type grants, and more). We
decide to use evolutionary computational methods for their abil-
ity to �nd solutions in large, non-systematic problem spaces and
their previous success in automatically de�ning roles [30]. Thus,
we design our system in the context of evolutionary computation,
deliberating that the training set for our designer contains subsets
of training cases aimed at evaluating di�erent characteristics of an
SDP network, i.e. a multi-objective system. Moreover, we assign
evolutionary computation with the task of designing and evalu-
ating roles to be used for a given network, where training cases
provide analysis and explanations of the network, e.g. the security
risks and accessibility of resources.

RQ2 presents a larger challenge as we must balance time com-
plexity, accuracy, interpretability, and explainability. Ideally, we
would simulate attack and defense strategies to evaluate security
risks during the design process. However, we would prefer to pro-
vide an expert with suggestions in a reasonable time-frame, possibly
48 to 72 hours. Given this constraint, we must consider alternative
methods of evaluation as simulations are computationally expen-
sive. Thus, we derive a security risk estimation function based on
previous work in developing SDP analysis frameworks [25]. We
�nd this estimation function reduces the computational cost of the
system enough to produce suggestions within our allotted time-
frame. While the estimation function does not replicate simulations
exactly, we �nd it is su�cient for guiding evolution towards useful
results.

These discoveries lead us to dividing the responsibilities of our
system into two phases. Phase one, which we call the Designer, de-
signs a potential SDP con�guration via evolutionary computation.
The Designer is only concerned with designing feasible con�gura-
tions to minimize security risks in a given network while adhering
to provided user-speci�cations as best as possible. Thus, the results
need not be interpretable or explainable to users. Phase two aims to
transform the results of the Designer into a human-friendly format
with explanations for design choices provided in some manner.
Thus, we call this phase of the system the Interpreter.

Based on our answers to RQ2, RQ3 has various possibilities as
the output of the Designer can be transformed into an acceptable
input format for the Interpreter. In other words, by separating
the system into two we can bene�t from the ease of computation
from one representation and the interpretability of another. For the
Designer, we choose to represent the relationships between users,
account types, and resources through bitstrings, so we can utilize
bitstring genetic algorithms. Bitstrings have the advantage of being

evaluated relatively faster than other representations but are not
as interpretable to users [6, 7]. For the Interpreter, we choose to
represent the Designer’s given SDP con�guration as an adjacency
matrix of a graph. We then further evaluate the viability of the
SDP con�guration by using a co-evolutionary framework which
uses Monte Carlo simulations to determine outcomes of attacker
and defender scenarios on the network. We represent the decisions
of the attackers and defenders as PUSH programs not only for
interpretability as a programming language but also because genetic
programming (GP) has shown to develop expressive and unique
PUSH programs which can act as reasonable heuristics of attacker
and defender behavior [3, 27, 28].

To give a comprehensive overview of our system, we discuss
situations and parameters which SDPush cannot (yet) account for.
In particular, SDPush requires an expert to provide a maximum
number of account types, and if this argument is insu�cient, then
the run’s suggestion will be uninformative. Also, while our system
can account for several user-speci�cations for an SDP con�guration,
creating a subset of training cases and their respective error function
is labor-intensive. These limitations provide avenues for future
research.

In the next section, we will describe related work, including
explicit use-cases of SDP and its strengths and weaknesses as well
as explaining why evolutionary computation is a viable method for
designing SDPs. We address RQ1, RQ2, and RQ3 in Section 3, Sec-
tion 4, and Section 5 by devising our automatic SDP designing and
explaining system SDPush and determining how we will represent
networks and SDPs in our system. We then outline and conduct
experiments in Sections 6 and 7. We conclude with a discussion of
the results of our experiments, the limitations of our system, and
future work which could be explored with SDPush.

2 RELATEDWORK
An SDP can mitigate or completely defend against various cyber at-
tacks such as server scanning, denial of service, password cracking,
man-in-the-middle attacks, and many others once con�gured [5].
An example of an SDP is provided in Figure 1. In this SDP, the con-
�guration has three account types: Admin, Manager, and Employee.
Reasoning behind these con�gurations could be as follows. Since an
adminmust be able to secure the network at all times, they are given
full access to the network. Note that only one admin user exists in
this network. Since an admin may be necessary for this network
and SDPs function under a zero-trust policy, this SDP con�guration
mitigates the potential security risks by reducing user count. A
manager may require more resources in the network to complete
their job, but they do not need the �ne-grain control and complete
control an admin does. Thus, the manager role connects to only
two resources. Lastly, a company may have many employees that
need to access resources in the network. In this simpli�ed scenario,
all employees need to access one resource. Thus, all employees
are bucketed into the employee account type giving access to only
one resource. Again since this a zero-trust network, we assume the
more users we add to this account, the more likely this resource is
to become compromised. However, we mitigate this security risk by
assigning only one resource to be connected to this role. Therefore,
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we have successfully con�gured this network to function with an
SDP.

Despite SDP’s proven e�ectiveness in various use-cases [10, 21],
it is often not implemented as it requires an expert to manually
design and analyze possible con�gurations for each unique net-
work [20]. The amount of time an expert needs to design a con�gu-
ration for a particular network drastically increases with network
complexity and size as there is no systematic method for designing
such [23].

Other systems/frameworks aimed at designing SDPs for given
networks are implemented to consider only specialized environ-
ments such as Software De�ned Networks, cloud-computing, visu-
alization technologies, and the Internet of Things [10, 19, 21, 24].
Our work focuses on generalizing the designing process of SDPs
for any environment that can be simpli�ed to a set of resources
and expected user-tra�c. We also provide an automatic designing
system while other works only provide systematic approaches. Fur-
thermore, we provide analysis alongside con�gurations while other
works only focus on providing either an SDP con�guration or an
analysis [10, 24, 25].

The use of evolutionary algorithms (EAs) for cybersecurity sim-
ulations is extensive. Simulations themselves have proven useful
in modeling real-life applications/scencarios which other methods
such as estimate functions fail to capture [18, 32] Garceia et al.
provide a co-evolutionary framework called RIVALS which models
attack/defense strategies as a simulator for real-life applications [9].
From this framework, co-evolutionary models have been used to
simulate cyber attack patterns from publicly available datasets,
identifying botnets in streaming data scenarios, and in modeling at-
tacker and defender interactions in segmented networks [13, 15, 26].
Of particular relevance to this paper, EAs have been used in assist-
ing experts in choosing defense strategies for a given network [14].
We draw on inspirations from these works for how we implement
the Designer and Interpreter of SDPush. More speci�cally, we uti-
lize the strategy of Hemberg et al. of using a simulation for initial
analysis and following this with a co-evolutionary system which
explores the adversarial spaces for segments of a network [13]. For
the Interpreter, we apply the framework developed by Shlapentokh-
Rothman et al. and utilize an adverserial co-evolutionary system
where defenders (solution population) have their �tness determined
by their ability to protect against attackers’ (testing population);
attackers, from their ability to overcome the defense strategies of
the defenders [25].

Our work speci�cally utilizes a bitstring genetic algorithm (GA)
and genetic programming (GP) to provide SDP networks and anal-
ysis respectively. Both evolutionary computational methods have
been used extensively in the �eld of cybersecurity to solve large-
scale complex problems or to provide analysis for existing systems.
GAs have been used to design and evaluate networks at various
scales [29, 31]. The aforementioned RIVALS framework is designed
to accommodate various types of GAs in modeling cyber attacks
such as malware intrusions in peer-to-peer (P2P) networks [9].
For the Designer, we choose to utilize a bitstring GA for its quick
evaluation and Doerr et al.’s �ndings on faster genetic mutation
operators [6, 7]. More generally, we choose to use a GA for design-
ing SDPs as no systematic method for guided design and imple-
mentation of roles exists currently, and Suarez-Tangil et al. have

shown that genetic programming can automatically produce rules
for events based on event correlation [23, 30].

Genetic programming (GP) is an evolutionary method that solves
speci�ed computational problems via producing computer pro-
grams [16]. GP de�nes a problem’s speci�cations via a set of train-
ing cases which, when used as a supervised learning technique,
captures di�erent aspects of the desired problem space. It evaluates
evolved computer programs by measuring their ability to solve
the desired problem. It achieves this by running each program on
each training case in the provided training set and compares the
programs’ output(s) to the desired output(s), assigning an error
value to each program. GP then uses these error values during
parent selection to select programs from the evolved population to
reproduce, and how many child programs each evolved program
produces. Adversarial co-evolution functions similarly. However,
the training set consists of another evolving population referred
to as the testing population. The testing population is evaluated
on its ability expose issues the solution population has not yet ac-
counted for [22]. We choose to use GP in particular because it has
proven useful in modeling cyber-attacks such as botnet detection
or malware intrusion models for SDPs on P2P networks [15, 25].

The Interpreter of SDPush produces attacker and defender strate-
gies in the form of PUSH programs. PUSH is a stack-based program-
ming language designed for genetic and evolutionary algorithms
where program instructions and data are stored on stacks [27, 28].
PUSH supports the evolution of expressive, modular architectures
and complex control-�ow structures achieved via self-manipulated
code. It also supports cross-data manipulation and the ability to add
new stacks to the language representing new data types. The reason
PUSH is used in program synthesis is for its lack of errors. If an
instruction wants to be executed, it must have all the necessary pa-
rameters on the data stacks to be executed. If an instruction fails to
meet this criteria, then it does not attempt to perform the operation,
or "no-ops". Thus, any potential erroneous code is ignored during
interpretation of the program. This allows evolutionary practices to
not be punished for exploring other domains of the problem space
which may have previously been punished due to incomplete code.

We utilize this ability in the implementation of the Interpreter by
providing a Network stack which allows defenders and attackers
to directly interact with the network architecture provided by the
Designer.

3 SDPUSH
We present a high-level overview of the SDPush system in Figure 2.
This diagram outlines the control �ow of the SDPush system along
with the input/output relationships throughout the system and its
two phases. In Sections 4 and 5, we will explore the inner mecha-
nisms of the �rst and second phases which design and analyze SDP
networks respectively. More speci�cally, we will describe the pur-
pose of each phase, the representations of individuals to evolve, our
choices in hyperparameters, and our reasoning for implementing
each system as they are. In the next section, we discuss the threat
model SDPush uses for both phases.
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Figure 2: Diagram of the control �ow of the SDPush system

3.1 Threat Model
We draw inspiration from Shlapentokh-Rothman et al.’s SDP analy-
sis framework [25]. Let �,* , ' represent the set of account types,
users, and resources respectively. In our threat model, attackers and
defenders aim to maximize and minimize compromised resources
respectively. Defenders attempt to minimize the value of compro-
mised resources by discovering compromised users D2 2 * and re-
moving them. Attackers try to maximize the value of compromised
resources by exploiting undiscovered compromised users in the
network. Attackers and defenders distribute a budget of attacking
and defending strength respectively across the account types�. We
use this budget as an abstraction of real-life resources dedicated to
the tasks of defending or attacking. This distribution determines the
probability they successfully complete their tasks relative to 0 2 �.
Each attacker and defender can have a maximum budget of 10 they
can distribute. Let ?0C = attack_alotted

10 , ?34 = defend_alotted
10 be

the probabilities of attackers and defenders succeeding respectively
in their tasks for a user from a particular account type.

If a defender successfully removes all compromised users from
a given account type so |*0 | = 0 where *0 is the set of users
in account type 0, then any resource '0 cannot be compromised
via 0. If |*0 | > 0, then attackers can attempt to exploit |*0 | com-
promised users. If an attacker is successful in doing so, then all
resources in '0 are compromised and thus '0 ✓ '2 where '2 is
the set of compromised resources with their associated values. Oth-
erwise, '0 remains uncompromised. Thus, we can quantify the
objectives of the defenders and attackers in the threat model by
the formula SecurityRisk =

Õ
A 2'2 E (A ) where E (A ) is the value

of resource A . The primary goal of the defenders/ attackers is to
minimize/maximize this function’s output.

4 THE DESIGNER
In this section, we address RQ1 by describing the �rst phase of
the SDPush system called the Designer. This phase is responsible
for designing an SDP con�guration which minimizes security risk
while also adhering to other constraints which the user speci�es.We

Algorithm 1 Designer
CA08=8=6B4C : cases evaluating other objectives are mixed with
the main training set which evaluates security risk
CC : threat threshold of percentage of resource values that will be
tolerated if lost
let ⌫ be the population of bitstrings representing SDP con�gura-
tions
let 1 2 ⌫ have the lowest security risk score of all individuals in
⌫
6 0 ù 6 is the generation counter
while 6 < max generations do

evaluate all individuals in ⌫ on CA08=8=6B4C
let 16 be the best bitstring in 6
if 16 has a lower security risk score than 1 then

1  16

⌫  a population of children generated by ⌫ via parent
selection and genetic operations

6 6 + 1
return 1

call these requirements the objectives of the Designer. We present
a high-level overview of the Designer algorithm in Algorithm 1.

In the next section, we will explain how we represent a net-
work and SDP architecture in bitstring form along with the ben-
e�ts of such. In Section 4.2, we derive our security risk estimate
function which this phase uses to model defender and attacker
scenarios as a computationally cheaper method at the expense
of accuracy. In Section 4.3, we explain how we are able to apply
selection pressure during evolution to generate individuals that
conform to user-speci�cations and other objectives while primarily
minimizing security risk via lexicase selection.

4.1 Network and SDP Representation
The Designer phase of SDPush evaluates and manipulates bitstrings
which represent an SDP con�guration in relation to the network
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User 1

User 2

Role 1

Role 2 Resource 2

Resource 1

Figure 3: A visual representation of the SDP con�guration
"10011011" where* = {D0,D1},' = {A0, A1}, and � = {00,01}.

speci�cations. By using a bitstring representation, the Designer can
evaluate various types of objectives on a singular individual faster
than with other representations such as the PUSH programming
language which the Interpreter phase uses [7, 27].

Bitstrings encode SDP con�gurations relative to the account
types de�ned in the network. The user provides an upper-limit to
the number of account types the desired SDP may have, we call
this �. If no upper-limit is provided, we assume |�| = 20. Each
user and resource in the network gets |�| bits within the bitstring
representing their adjacency to account types in the network. Thus,
the length of a bitstring individual 1 in the Designer is always
( |�| ⇤ |* |) + (|�| ⇤ |' |), where* is the set of network users and ' is
the set of network resources. We can acquire the sub-bitstring 1D of
a particular user by slicing the original bitstring 1 as follows: 1D =
1 [D8 : D8+|�|],whereD8 2 * , 0  8 < |* | is a particular user’s index.
Similarly, we can acquire the sub-bitstring of a particular resource
as follows: 1A = 1 [|* | +A 9 : |* | +A 9 + |�|],where A 9 2 ', 0  9 < |' |
is a particular resource’s index. Note that the Designer assigns the
�rst |* | ⇤ |�| bits of 1 for user assignment and the rest for resource
assignment.

By using these formulas, the Designer can keep con�gurations
in bitstring format for evolvability and construct its corresponding
SDP con�guration for evaluation. Figure 3 provides an example of
a network de�ned in bitstring form.

4.2 Security Risk Estimation
While simulations provide realistic feedback in the cases of mod-
eling cyber attacks, evaluating candidate con�gurations in this
manner is computationally expensive. Thus, we address RQ2 by
examining how to best utilize a security risk estimate function
to reduce computational costs. Let CC be the user-provided threat
threshold representing the number of resources that is acceptable
to have compromised in any given attack. If a generated SDP is
estimated to lose less than or equal to CC resources, it is considered
a potential SDP con�guration for the network. We determine CC for
a given SDP network with the Security Risk Score calculated below.

SecurityRiskScore = (
’
A 2'

(1 � (
÷
02�A

@@34⇤ |*0 |
0C )) ⇤ E (A ))/E (')

The SecurityRiskScore estimation function iterates through
each resource A 2 ' calculating the probability that A is com-
promised and thus {A } ✓ '2 . We calculate this by determining
the probability the attacker compromises at least one user in *0 .
The probability an attacker does not successfully compromise a
user is @0C . The probability a defender does not successfully iden-
tify a non-compliant (vulnerable) user is @34 . The attacker has
(1 � ?34 ) ⇤ |*0 | = @34 ⇤ |*0 | chances to do so. The probability
to compromise at least one user is multiplied by the value of the
resource. We sum the estimated losses of the resources and return
this as our security risk estimate. In the case that a user in the
network cannot access at least one resource, we add a penalty to
the security risk score given by the estimate function for each user
not connected to a resource and vise versa.

To evaluate an SDP network using the estimate function, we
randomly generate two arrays, ⇡3 and ⇡0 , of �oats where the
length of each array is |�|. The sum of each array is equal to 10.0.
We assign array ⇡3 to be the defender’s budget distribution while
array ⇡0 is the attacker’s budget distribution. For account 08 2 �
where 1  8  |�|, the probability the defender and attacker are not
successful at their task is 1 � ⇡3 [8 ]

10 and 1 � ⇡0 [8 ]
10 respectively. We

generate 100 of these array pairs to be used as standard inputs to
the estimate error function for each SDP. Thus, every SDP network
will be evaluated on their ability to minimize their security risks
with these defender/attacker strategies.

4.3 Adhering to Other Objectives
While the Designer’s primary concern is minimizing security risk,
we want it to also consider given user-speci�cations during evolu-
tion. Examples of user-speci�cations include requiring one account
type to connect to all resources in a network or allowing only 3
users to connect to any account type. We inject cases testing these
speci�cations to varying levels of scrutiny into the main training
set of the Designer with their own error functions. By using lexicase
selection, we can �lter candidate SDPs by their compliance to these
objectives [12]. Lexicase selection gives the added bene�t of letting
di�erent objective errors be evaluated at a di�erent scale than the
security risk errors, e.g. a boolean error value can function on a [0,
1] scale while security risk can function on a [0, 100] scale.

5 THE INTERPRETER
Here, we describe the second phase of the SDPush system called the
Interpreter. This phase analyzes the SDP network generated from
the previous phase by simulating defender/attacker scenarios. This
phase is only concerned with analyzing the security risks, defender
strategies, and attacker strategies as the user-speci�cations will
have been met by the Designer. We present a high-level overview
of the Interpreter algorithm in Algorithm 2.

In the following section, we explain the network and SDP repre-
sentation during this phase of the SDPush system. In Section 5.2, we
describe the simulation framework we use to analyze the potential
SDP in further detail. In Section 5.3, we discuss the role of PUSH
programs in representing defender and attacker strategies, along
with the stacks and instructions used to do so.
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Algorithm 2 Interpreter
attack: set of attackers where each attacker has their attack
budget distribution and a PUSH program
defender: the current best defender against the attack set
B = 1: number of switches between defender and attacker evolu-
tion
<0G_B: maximum switches allowed
generate 10 attackers for initial defender training set
while B  <0G_B do

if B is odd then
run defender GP to �nd defender_new
if defender_new minimizes security risk better than

defender then
defender = 34 5 4=34A_=4F

else
run attacker GP to �nd attacker_new
attack = attack

–{attacker_new}
B = B + 1

return defender, attack

Algorithm 3 Bitstring Simpli�er

let 1 be the given bitstring SDP
let � be the set of accounts in 1
for 0 2 � do

if 0 is not connected to any users OR 0 is not connected to
any resources then

remove 0 from all users and resources in 1
else

if 0 = G 2 � \ 0 then
merge the users of both 0 and G into ~ = 0 = G

return 1

5.1 Network and SDP Representation
The Interpreter phase of SDPush analyzes a given SDP network for
security risks and presents its �ndings to the user. The Interpreter
is only concerned with analyzing the security risks of the network
under the provided SDP network. Thus, by using an adjacency
matrix representation, we provide an interpretable format which
can be quickly referenced when developing and understanding the
defense/attack strategies. We present a high-level overview of the
bitstring-to-matrix transformation algorithm in Algorithm 3.

Similar to the bitstrings the Designer uses, the adjacency matrix
is constructed relative to the account types found in the network
with users appearing �rst in the matrix. Thus, we utilize the formu-
las found in Section 4.1 to obtain the user and resource information
and add this to our matrix in the order they appear in the bitstring.

5.2 SDP Simulation
We utilize the existing framework Shlapentokh-Rothman et al. de-
veloped for analyzing SDP networks’ security risk [25]. In this
framework, a Monte Carlo simulation is run with a pairing of a
defender and attacker budget for the existing account types in the
network. We use a simulation to evaluate the SDP during this phase
as we are intently analyzing only one SDP network as compared

DESIGNER SPECIFICATIONS

Population Size 1000
Max Generations 20000
Threat Threshold 0.50
Parent Selection Lexicase Selection [12]
Variation Bit-Flip & Uni. Crossover [7]
Mutation Rate 0.09
Initial Genome Size Range 20 ⇤ ( |' | + |* |)
Max Account Types Created 20 OR user-provided

Table 1: The speci�cations for all runs of the Designer phase
of SDPush. ' is the set of resources in the given network and
* is the set of expected users in the network.

to multiple. Therefore, we can take on the computational cost of
simulating attacks on the network without taking an excessive
amount of time to do so.

Defenders are �rst given the opportunity to discover and remove
compromised users in the network as described in Section 3.1. At-
tackers are then given an opportunity to exploit any remaining
users in the network to compromise any resources the user can
access via the account types they are attached to. The total value
of the resources compromised by the exploited users is the security
risk score for that simulation. We take the average of the security
risk scores for a defender/attacker pairing and assign it as the result
of the pairing.

5.3 Strategies as PUSH Programs
In the interest of generating defense and attack strategies that
produce meaningful explanations, we do not directly evolved the
budget distributions of the defenders and attackers as Shlapentokh-
Rothman et al. does. We instead evolve PUSH programs which
can use information regarding the network to generate the budget
distributions across the account types. These PUSH programs take
an adjacency matrix of a network as input and provide a vector of
length |�| as output.

We are able to generate these programs by using �ve stacks.
The exec, float, boolean, and vector stacks and their respec-
tive instructions are implemented similarly to their Clojush imple-
mentations (explained in Section 6). The network stack is a novel
stack type which allows PUSH programs to gather information
about the provided network. The data stored on this stack are
the users and resources in the network. We provide the standard
stack manipulation instructions other stacks have in the PUSH lan-
guage [27]. We also provide two instructions called network_value
and num_connectionswhich are polymorphic and take the top ele-
ment from the network stack. If network_value is given a resource,
it returns the value of the resource as a �oat. If it is given a user,
it returns a �oat representing the total value of all resources the
user can access via their account types. The num_connections in-
struction simply returns a �oat of resources a user has access to
and vise versa.
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INTERPRETER SPECIFICATIONS

Defender Population Size 100
Attacker Population Size 100
Defender Max Generations 1000
Attacker Max Generations 1000
Defender Strength Range [0, 10]
Attacker Strength Range [0, 10]
Max Switches 20
Simulations per Pairing 100
Parent Selection Epsilon-Lexicase Selection [17]
Variation UMAD [11]
Mutation Rate 0.09 [11]
Initial Genome Size Range [1, 200]

Table 2: The speci�cations for all runs of the Interpreter
phase of SDPush.

6 METHODS
In this section, we discuss system-speci�c hyperparameters for the
SDPush system and our method for implementing SDPush. We
implement the SDPush system similarly to how Clojush2, a PushGP
implementation in the Lisp dialect Clojure, is implemented [27].
The code used in our experiments is available on GitHub3. A list of
�xed speci�cations for the Designer and Interpreter phases of the
SDPush system can be found in Table 1 and 2 respectively.

For our SDPush system, the user must specify the average num-
ber of expected users to use the network, the number and value of
resources in the network, the threat threshold, CC , of the percentage
of resource value that is acceptable to be at risk, and any other
speci�cations the user desires. Once these arguments have been
provided, the Designer’s training set is constructed. As an exam-
ple, assume a desired SDP network should have an account type
connected to at least 60% of the resources in the network. The user
provides, along with the network itself, this desired percentage and
an error function which can be applied to bitstrings to determine if
there exists at least one account type that follows this criteria. To
provide more training data for the Designer to use, SDPush creates
various training cases which checks if an SDP candidate has an
account type that connects to 10%, 20%, ..., 60%, of the resources in
the network.

7 EXPERIMENTS AND RESULTS
In this section, we exhibit our SDPush system’s ability to automati-
cally design, interpret, and explain con�gurations to a user for a
given network which minimizes security risks and incorporates
user-speci�cations. In the next section, we describe the runs per-
formed to collect data about the system. In the sections that follow,
we provide our analysis of di�erent parts of the system. In Section 8,
we provide our interpretation of the results.

2https://github.com/thelmuth/Clojush
3https://github.com/jgfrazie/SDPush

7.1 Setup
We devise a method for testing various inputs into the SDPush
system in a systematic order. For every execution of the system,
we provide a threat threshold of 50% and a maximum number of
account types set at 20. We then input all possible combinations
of network users and resources where the number of users and
resources in the network could be [5, 10, 20, 40, 80, 160] for a total
of 36 combinations. We run each of these combinations 150 times.
The value of each resource in the network is randomly assigned an
integer in the range [1, 50].

7.2 Security Risk Variance of Proposed SDPs

0

200

400

600

0.25 0.50 0.75
Percentage of Resource Value Compromised

Fr
eq

ue
nc

y

Produced SDPs' Security Risk Distribution

Figure 4: The simulated average percent total of resource
value compromised in any attack against the best defense
strategy of the automatically designed SDP

Figure 4 illustrates the distribution of security risks of generated
SDP networks. To construct this distribution, we ran the Monte
Carlo simulation from Section 5.2 on the outputted best defender
against each attacker 100 times. The average percentage of the total
resource values lost across the simulations was then used as the
security risk for the outputted SDP. The large frequency observed
at the 25% mark consists of a majority of runs where the number
of users or the number of resources was less than or equal to the
maximum number of account types.

7.3 Comparing the Security Risk Estimate to
Simulations

Figure 5 provides a null distribution of the security risk evaluations
of SDPs generated by SDPush. The purpose of a null distribution test
is to analyze the equality of two sets of data. If the two sets of data
being tested follow the null hypothesis (are equally comparable to
each other), then there should be little observed di�erence between
sample means. Otherwise, the two data sets are not comparable.

To construct this �gure, we use the same method in Section 7.2
to obtain the simulator estimate for security risk. We then used the
security risk estimate error function described in Section 4.2 on the
outputted SDP as to obtain a security risk calculated via estimation.
These two security risk scores act as our two data sets. We shu�e
the labeling of our data between the two sets to obtain a new
permutation of the two data sets. We then calculate the di�erence
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Figure 5: The null distribution of the security risk of designed
SDPs using the security risk estimate function and theMonte
Carlo simulator.

Algorithm 4 Best Defender for a 40-user 80-resource network
let BCA0C be the budget distribution array
for 0 2 �22>D=CB do

let E0;D4 be the distributed resource value
for A 2 '4B>DA24B0 do

E0;D4+ = E (A )/|*B4AB0 |
E0;D4 = E0;D4/|'4B>DA24B0 | BCA0C [0] = E0;D4

return BCA0C

in means of these sets and add it to the frequency plot. We repeat
this process 10000 times. The vertical dotted line represents our
original observed permutation relative to the shu�ed permutations
under the null hypothesis. Considering its position relative to the
distribution, the null hypothesis should be rejected.

7.4 E�ect of User-Speci�cations
For the experiments in this section, we provide the same threat
threshold as the other experiments and set the maximum number
of possible account types to 5. We de�ne a network which contains
5 users and 5 resources each valued at 10, 20, 30, 40, and 50. Our
reasoning behind this is to provide SDPush with an "easy" network
to solve so we can observe the e�ect user-speci�cations have on
the Designer.

We perform three executions of the system with their results
found in Figure 6. The �rst execution has no user-speci�cations
provided. The second execution has a user-speci�cation to have at
least one account type connected to at least 50% of the resources
in the network. The third execution also has a user-speci�cation,
to have at least two account types connected to at least 50% of the
resources in the network. The error function for these speci�cations
will return the boolean TRUE if there exists account types of this
requirement and FALSE otherwise.

7.5 Defender and Attacker Strategies
Several defender and attacker strategies were generated as "�nal"
strategies outputted by SDPush. However, the most common and
e�ective strategies followed the same high-level structure as Al-
gorithm 4. In these strategies, the individual iterates through the

accounts and checks the value of resources connected to that ac-
count. Using this information, some form of a defense value (usually
a percent average of the total network value) was used as the budget
for each account.

7.6 Networks Minimizing Security Risks Only
Here we provide example network structures con�gured by the
Designer in Figures 7 and 8. While several strategies and designs
were created by the Designer, most of them were a derivative of
one of these two strategies.

8 DISCUSSION AND LIMITATIONS
In this section, we provide our interpretation of the results pre-
sented in Section 7. In Figure 4, we �nd the distribution suggests 1)
the Designer’s suggestions are fairly consistent and 2) the threat
threshold provided by the user plays a critical role in determining
which generated SDPs the Designer considers suitable for the net-
work. However, this a�ect does not force the Designer to adhere
strictly with this requirement if a better SDP can be con�gured as
is evident by the values before the 50% mark. The large frequency
before the 50% mark suggests the naive solution of connecting one
user or resource to an account is e�ective in this scenario.

Figure 5 suggests our security risk estimate function and the
Monte Carlo simulator cannot obtain similar results. Thus, the
estimate function most likely is not a viable substitution for using
a simulation framework. Furthermore, this suggests the Designer
is not using the most accurate information when designing SDPs.
Despite this �aw, the estimate error function is still able to guide
evolution to producing valuable suggestions for users as evident
by Figure 4. Therefore, in situations where computational cost is
restricted, the use of security risk estimates is a viable substitute
to simulator results. However, future work should address this
lack of accuracy in the Designer while maintaining the reduced
computational costs of the current implementation.

The SDP networks shown in Figure 6 suggest the user-speci�cations
provided have an e�ect on the Designer when con�guring SDPs.
While the provided user-speci�cations con�gured the desired account-
to-resource relationships, the speci�cations had an unintended
e�ect on account-to-user relationships as well. This unintended
e�ect could be detrimental to the quality of suggestions provided
by SDPush as certain speci�cations could produce undesirable char-
acteristics in the generated SDP network, causing the run of the
system to be signi�cantly less useful to the user. If we wanted to
prevent this e�ect from happening, it would require the user to
provide another user-speci�cation discouraging the observed be-
havior. With the current implementation of the SDPush system,
this process is laborious. Thus, future work should investigate ways
of mitigating unintended side-e�ects of these user-speci�cations
on produced SDP networks.

As for the quality of generated defender/attacker strategies, Al-
gorithm 4 illustrates a relatively static selection of strategies the
Interpreter chooses. In other words, SDPush is able to provide
unique results on a case-by-case basis; however, the value and di-
versity of these results does not meet expectations. Most strategies
being a derivative of Algorithm 4 could lead to three conclusions:
1) the Interpreter is unable to produce unique defender/attacker
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Figure 6: Di�erent SDPs produced by SDPush. From left to right, no user-speci�cations were provided, one user-speci�cation to
have one account type connected to 50% of the resources, and one user-speci�cation to have two account types connected to 50%
of the resources.

Figure 7: The most recurrent "simple" strategy the Designer
used to construct minimal security risk SDP networks. It
would pair users and resources in a one-to-one manner

strategies and requires improvement, 2) the Designer’s choices limit
the problem space of the Interpreter so much it contains the same
set of minima in each run of the SDPush system, and/or 3) the na-
ture of SDPs makes other possible strategies inferior to the evolved
strategy provided.

Figure 7 and Figure 8 show SDPush’s Designer phase as it is cur-
rently implemented is able to generate unique networks dependant
on the inputted situation. Yet, most designs falling into a form of one
of these strategies highlights the importance of user-speci�cations
in the Designer’s process. Not only do they give �exibility to the
system and greater control to the user to help de�ne their problem

Figure 8: A recurring Designer strategy for con�guring SDP
networks. It would group all users into one account and all
resources into another account attached to one resource and
one user respectively.

space more accurately, it also encourages a more diverse set of SDP
con�gurations for networks as evident by Figure 6.

9 CONCLUSIONS AND FUTUREWORK
Software De�ned Perimeter (SDP) stands as a strong contender
for the future of network defense as it provides enhanced security



Conference’17, July 2017, Washington, DC, USA James Gunder Frazier

measures for relatively minimal cost. However, SDP requires an
expert to manually design and analyze possible con�gurations for
each unique network with no systematic guide for doing so.

We introduced our novel system SDPush: a two phase evolu-
tionary computational system which can automatically design and
analyze SDP networks. Our experiments demonstrate how SDPush
can design fairly consistent con�gurations for networks which can
take into consideration other speci�cations which do not directly
involve minimizing security risks.

Although we have illustrated SDPush’s ability to design and an-
alyze SDP networks, there are avenues available for improvement.
Future work should focus on incorporating more human interac-
tion during the Designer phase and iterating on the security risk
estimate function in order to produce more accurate and suitable
networks more consistently. We also believe it is possible the De-
signer could bene�t from the results of the Interpreter in iterating
on a design. Furthermore, we anticipate a more user-friendly format
for presenting the analysis of the network to arise other than just
presenting the best defenders and attackers to the user.

As for quality of produced suggestions and explanations, we
believe future work should attempt to coerce evolution to �nd more
diverse solutions throughout the entirety of the SDPush system
without requiring the use of user-speci�cations to do so. We also
expect di�erent methods of representing and evolving networks to
be found which can improve many of the aspects discussed above.
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